洛谷 P2047 [NOI2007]社交网络 解题报告
P2047 [NOI2007]社交网络
题目描述
在社交网络(\(social\) \(network\))的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。在一个社交圈子里有\(n\)个人,人与人之间有不同程度的关系。我 们将这个关系网络对应到一个\(n\)个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值\(c\),\(c\)越小,表示两 个人之间的关系越密切。
我们可以用对应结点之间的最短路长度来衡量两个人\(s\)和\(t\)之间的关系密切程度,注意到最短路径上的其他结点为\(s\)和\(t\)的联系提供了某种便利, 即这些结点对于\(s\)和\(t\)之间的联系有一定的重要程度。我们可以通过统计经过一个结点\(v\)的最短路径的数目来衡量该结点在社交网络中的重要程度。
考虑到两个结点\(A\)和\(B\)之间可能会有多条最短路径。我们修改重要程度的定义如下:
令\(C_{s,t}\)表示从\(s\)到\(t\)的不同的最短路的数目,\(C_{s,t(v)}\)表示经过\(v\)从\(s\)到\(t\)的最短路的数目;则定义
\(I(v)=\sum_{s!=v,t!=v} C_{s,t(v)}/C_{s,t}\)
为结点\(v\)在社交网络中的重要程度。
为了使\(I(v)\)和\(C_{s,t(v)}\)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。
现在给出这样一幅描述社交网络s的加权无向图,请你求出每一个结点的重要程度。
输入输出格式
输入格式:
输入第一行有两个整数,\(n\)和\(m\),表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到\(n\)进行编号。
接下来\(m\)行,每行用三个整数\(a\),\(b\),\(c\)描述一条连接结点\(a\)和\(b\),权值为\(c\)的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。
输出格式:
输出包括\(n\)行,每行一个实数,精确到小数点后3位。第\(i\)行的实数表示结点\(i\)在社交网络中的重要程度
这是一道最短路计数+枚举的题目。
提供一种disj的最短路计数思路。
当某个点已经松弛完毕,去松弛其他点时,若松弛成功,则将计数改为这个点的计数,若不成功但权值与对方相等,则把自己的计数加上去。
最后枚举每个点,看是否在\(s,t\)的最短路上,如果在,用乘法原理计算即可。
Code:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#define P pair<int,int >
#define ll long long
using namespace std;
const int N=102;
const int M=9020;
int head[N],edge[M],to[M],next[M],cnt0;
void add(int u,int v,int w)
{
to[++cnt0]=v;edge[cnt0]=w;next[cnt0]=head[u];head[u]=cnt0;
to[++cnt0]=u;edge[cnt0]=w;next[cnt0]=head[v];head[v]=cnt0;
}
priority_queue <P,vector <P >,greater<P> > q;
P p;int n,m;ll cnt[N][N];
int dis[N][N],used[N];
void disj(int s)
{
memset(used,0,sizeof(used));
dis[s][s]=0;
cnt[s][s]=1;
p.first=0,p.second=s;
q.push(p);
while(!q.empty())
{
int u=q.top().second;
q.pop();
if(used[u]) continue;
used[u]=1;
for(int i=head[u];i;i=next[i])
{
int v=to[i],w=edge[i];
if(dis[s][v]>dis[s][u]+w)
{
dis[s][v]=dis[s][u]+w;
cnt[s][v]=cnt[s][u];
p.first=dis[s][v],p.second=v;
q.push(p);
}
else if(dis[s][v]==dis[s][u]+w)
cnt[s][v]+=cnt[s][u];
}
}
cnt[s][s]=0;
}
int main()
{
scanf("%d%d",&n,&m);
int u,v,w;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
memset(dis,0x3f,sizeof(dis));
for(int i=1;i<=n;i++)
disj(i);
for(int k=1;k<=n;k++)
{
double ans=0.0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(cnt[i][j]&&dis[i][k]+dis[k][j]==dis[i][j])
ans+=double(cnt[i][k]*cnt[k][j])/double(cnt[i][j]);
printf("%.3lf\n",ans);
}
return 0;
}
2018.7.1
洛谷 P2047 [NOI2007]社交网络 解题报告的更多相关文章
- 洛谷——P2047 [NOI2007]社交网络
P2047 [NOI2007]社交网络 $Floyd$,一眼看到就是他(博主是不小心瞄到了这个题的标签吧qwq) 这个题目只要预处理出$S$到$T$的最短路的条数即可,类似$Spfa$的更新方法 如果 ...
- 洛谷 P4027 [NOI2007]货币兑换 解题报告
P4027 [NOI2007]货币兑换 题目描述 小 \(Y\) 最近在一家金券交易所工作.该金券交易所只发行交易两种金券:\(A\) 纪念券(以下简称 \(A\) 券)和 \(B\) 纪念券(以下简 ...
- 洛谷P2047 [NOI2007]社交网络 [图论,最短路计数]
题目传送门 社交网络 题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系. ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- BZOJ1491 洛谷2047 NOI2007 社交网络
Description: 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们 ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
随机推荐
- [HNOI2012]集合选数 BZOJ2734
分析: 构造法...每次找到一个没有被选过的数,用这个数推出一个表格,之后在表格上跑状压DP,时间复杂度O(n) 附上代码: #include <cstdio> #include < ...
- 20155218《网络对抗》Exp3 免杀原理与实践
20155218<网络对抗>Exp3 免杀原理与实践 一.使用msf生成后门程序的检测 (1)将上周msf生成的后门文件放在virscan.org中进行扫描,截图如下: (2)使用msf时 ...
- winform和wpf如何实现鼠标穿透的效果
先看一下鼠标穿透的效果: 可以看到Form1这个程序虽然遮在了桌面的上面,但是我们还可以在窗体上点击桌面上的必应词典和网易邮箱大师,好像这个叫“Form1”的窗口被“穿透”一样. winform版本: ...
- coco2d-x游戏逻辑结构
在Cocos2d-x中开发游戏的主要逻辑和结构是:先创建场景,在场景上添加一层或多层,然后可以在指定层上添加精灵.菜单.文字等,可以为精灵.文字执行某个动作(或者移动),检测玩家触屏事件,开启任务调度 ...
- CS50.5
函数,全局变量,参数,返回值. 1,类型转换. 各种数据类型进行转换 2,API函数 应用程序编程接口. application programming interface 写写随笔吧,先说计算机.. ...
- 纯 CSS 解决自定义 CheckBox 背景颜色问题
CodePen 需要使用色 #ec6337(当然可以是任意颜色),解决问题:记住密码定制 CheckBox,解释全在注释里 主要使用到 ::before 或 ::after 伪类处理,伪装成内部的那个 ...
- Spring的单例模式底层实现学习笔记
单例模式也属于创建型模式,所谓单例,顾名思义,所指的就是单个实例,也就是说要保证一个类仅有一个实例.单例模式有以下的特点:①单例类只能有一个实例②单例类必须自己创建自己的唯一实例③单例类必须给所有其他 ...
- Vulkan入门流程
原文摘自Vulkan入门流程 Vulkan是Khronos Group(OpenGL标准的维护组织)开发的一个新API,它提供了对现代显卡的一个更好的抽象,与OpenGL和Direct3D等现有api ...
- 《杜增强讲Unity之Tanks坦克大战》11-游戏流程控制
11 游戏流程控制 使用协程来控制游戏流程 11.1 添加MessageText 首先添加一个Text来显示文字 image 设置GameMgr image 11.2 游戏整体流程 下面Gam ...
- 【大数据实战】将普通文本文件导入ElasticSearch
以<刑法>文本.txt为例. 一.格式化数据 1,首先,ElasticSearch只能接收格式化的数据,所以,我们需要将文本文件转换为格式化的数据---json. 下图为未处理的文本文件. ...