以上我們談了一些 邏輯的基礎,接下來我們會談一些 數學的基礎,也就是整數與實數系統。其實我們已經用了很多,非正式地,接下來我們會正式地討論他們。

建構 實數系統的一個方法就是利用公理跟集合論來建構。

首先我們需要從集合論出發,定義在 set $A$ 上的 二元運算子(binary operator)

Def.

$$
f: A times A rightarrow A
$$

我們在描述一個二元運算子的時候並不會如同以往的函數一樣, $f(a, a’)$,而是會把運算子寫在中間, $afa’$。一般來說,我們會用符號來表示,而不是字母,像是加號 $+$、乘號 $cdot$。

假設

我們假設存在一個 set $mathbb{R}$,代表實數,有兩個運算子分別是加法運算子 $+$、乘法運算子 $cdot$,以及一個次序關係 $lt$ 定義於 $mathbb{R}$ 上,會有以下特性:

代數特性(Algebraic Properties)

  1. $(x + y) + z = x + (y + z), forall x, y, z in mathbb{R}$

$(x cdot y) cdot z = x cdot (y cdot z), forall x, y, z in mathbb{R}$

  1. $x + y = y + x, forall x, y, z in mathbb{R}$

$x cdot y = y cdot x, forall x, y, z in mathbb{R}$

  1. $exists! 0 in mathbb{R}, forall x in mathbb{R}, s.t. enspace x + 0 = x$

$exists! 1 in mathbb{R}, forall x in mathbb{R}, s.t. enspace x cdot 1 = x$

  1. $for enspace each enspace x, exists! y, s.t. enspace x + y = 0$

$for enspace each enspace x, exists! y, s.t. enspace x cdot y = 1$

  1. $x cdot (y + z) = (x cdot y) + (x cdot z), forall x, y, z in mathbb{R}$

混合代數與次序特性(A Mixed Algebraic and Order Property)

  1. $If enspace x gt y, then enspace x + z gt y + z$

$If enspace x gt y, z gt 0, then enspace x cdot z gt y cdot z$

次序特性(Order Properties)

  1. 次序關係 $lt$ 有最小上界性
  2. $If enspace x lt y, then enspace exists z enspace s.t. enspace x lt z, z lt y$

由 1~5 點我們可以導出一些代數性質,像是負數、減法運算、倒數跟商的概念。我們可以定義正數($x gt 0$)跟負數($x lt 0$)。在代數領域,擁有 1~5 點特性的代數結構,我們會稱為域(field)。如果有包含第六點就稱為有序域(ordered field)。在拓樸領域我們通常會討論的是第7、8點,他只牽涉到次序關係,同時擁有這兩點的集合稱為線性連續統(li 大专栏  The Integers and the Real Numbersnear continuum)。

說到這邊我們還沒提到整數呢!我們就用前6點來定義整數(integer)。

Def.

$A subseteq mathbb{R} enspace is enspace inductive:$

  1. $1 in A$
  2. $forall x in A enspace s.t. enspace x + 1 in A$

Def.

$mathcal{A} enspace is enspace a enspace collection enspace of enspace all enspace inductive enspace subsets enspace of enspace mathbb{R}$
$positive enspace integers enspace is enspace a enspace set enspace mathbb{N} = bigcap_{A in mathcal{A}} A$

這樣的定義是很巧妙的,他其實只有明確的定義了1是在這個集合裡,後面都以 $x+ 1$ 的形式去推演,這稱為可歸納。而正整數是眾多可歸納集合的交集,可見正整數是最小的子集。

正整數有些特性:

  1. 正整數是可歸納的(inductive)
  2. (Principle of inductive)如果 set $A$ 是可歸納的,而且含正整數的集合,那麼 $A = mathbb{N}$

與實數不同的是,他不會有第八點特性,也就是,$for enspace each enspace n in mathbb{N}, nexists a in mathbb{N} enspace s.t. enspace n lt a lt n + 1$。


如果有個正整數 $n$,我們用 $S_{n}$ 來代表所有小於 $n$ 的正整數的集合,我們稱他為 section

$$
S_{n + 1} = {1, dots , n}
$$

接下來我們會描述 證明 兩個可能不是很熟悉但很有用的特性,你可以看成是另一個版本的數學歸納法:

Theorem: Well-ordering property

$$
S subseteq mathbb{N}, S neq emptyset, S enspace has enspace smallest enspace element.
$$

他描述了 $mathbb{N}$ 的非空子集,一定有最小元素。

Theorem: Strong induction principle

$$
A enspace is enspace a enspace set enspace of enspace positive enspace integers,
$$

$$
for enspace each enspace n, S_n subseteq A enspace s.t. enspace n in A, then enspace A = mathbb{N}
$$

這邊描述了,對每個 $n$ 來說,由 $S_n subseteq A$ 可以推出 $n in A$ 的話,那麼 $A$ 就是 $mathbb{N}$。

以上我們用了有序域中的第 1~6 點公理,那第 7 點呢?

你用會用到第 7 點(最小上界公理)來證明,正整數集合 $mathbb{N}$ 在實數的集合 $mathbb{R}$ 中是沒有上界的。

Theorom: Archimedean ordering property

$$
the enspace set enspace mathbb{N} enspace has enspace no enspace upper enspace bound enspace in enspace mathbb{R}.
$$

The Integers and the Real Numbers的更多相关文章

  1. PAT1120: Friend Numbers

    1120. Friend Numbers (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Two in ...

  2. PAT 1120 Friend Numbers

    1120 Friend Numbers (20 分)   Two integers are called "friend numbers" if they share the sa ...

  3. A1120. Friend Numbers

    Two integers are called "friend numbers" if they share the same sum of their digits, and t ...

  4. PAT A1120 Friend Numbers (20 分)——set

    Two integers are called "friend numbers" if they share the same sum of their digits, and t ...

  5. Lintcode521-Remove Duplicate Numbers in Array-Easy

    Description Given an array of integers, remove the duplicate numbers in it. You should: Do it in pla ...

  6. 1120 Friend Numbers (20 分)

    1120 Friend Numbers (20 分) Two integers are called "friend numbers" if they share the same ...

  7. PAT甲级 1120. Friend Numbers (20)

    1120. Friend Numbers (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Two in ...

  8. PAT 1120 Friend Numbers[简单]

    1120 Friend Numbers (20 分) Two integers are called "friend numbers" if they share the same ...

  9. PAT_A1120#Friend Numbers

    Source: PAT A1120 Friend Numbers (20 分) Description: Two integers are called "friend numbers&qu ...

随机推荐

  1. spark mllib lda 中文分词、主题聚合基本样例

    github https://github.com/cclient/spark-lda-example spark mllib lda example 官方示例较为精简 在官方lda示例的基础上,给合 ...

  2. Netty之内存泄露

    直接内存是IO框架的绝配,但直接内存的分配销毁不易,所以使用内存池能大幅提高性能. 1.为什么要有引用计数器 Netty里四种主力的ByteBuf,其中UnpooledHeapByteBuf底下的by ...

  3. A component required a bean named xxx that could not be found. Action: Consider defining

    0 环境 系统:win10 1 正文 https://stackoverflow.com/questions/44474367/field-in-com-xxx-required-a-bean-of- ...

  4. 导入import的多种形式

    参考资料:anaconda官方资料 一.module(模块) 比如fibo是个模块(.py文件),其中有fib.fib2等函数 第一种形式:import fibo 在当前的符号表中,这并不会直接进入到 ...

  5. LIS 问题 二分查找优化

    按n=5,a-{4,2,3,1,5}为例 dp的值依次是: INF INF INF INF INF 4     INF INF INF INF 2     INF INF INF INF 2      ...

  6. iOS动画效果集合、 通过摄像头获取心率、仿淘宝滑动样式、瀑布流、分类切换布局等源码

    iOS精选源码 动画知识运用及常见动画效果收集 较为美观的多级展开列表 MUImageCache -简单轻量的图片缓存方案 iOS 瀑布流之栅格布局 一用就上瘾的JXCategoryView iOS ...

  7. 二:MySQL的操作

    1:创建数据库 create database  bjpowernode ; 2:使用数据库 use bjpowernode; 3:导入数据库文件sql source  然后把SQL文件拖过来就可以了 ...

  8. Tarjan模板——求强连通分量

    Tarjan求强连通分量的流程在这个博客讲的很清楚,再加上我也没理解透,这里就不写了. 缩点:将同一个连通块内的点视为同一个点. 扔一道模板题:codeVS2822爱在心中 第一问很显然就是求点数大于 ...

  9. 五、RabbitMQ Java Client基本使用详解

    Java Client的5.x版本系列需要JDK 8,用于编译和运行.在Android上,仅支持Android 7.0或更高版本.4.x版本系列支持7.0之前的JDK 6和Android版本. 加入R ...

  10. perf4j+logback配置 非spring 可使用注解

    最近项目打算使用perf4j进行性能监控,由于项目没有使用spring,而又不想对代码入侵过高,打算使用注解的方式进行接入.perf4j采用AspectJ库实现AOP. 具体接入方法如下: logba ...