今天老板要处理一批带有时间序列的数据,源数据为1秒钟一行的csv数据,处理之后变成15分钟一行的数据。

源数据示例如下:

               time     B00    B01      ...           RollMean2.5     RollMean10
2018-05-31 09:44:39 15.212 5.071 ... 2.97 2.99
2018-05-31 09:44:40 17.202 4.047 ... 2.90 3.08
2018-05-31 09:44:41 10.137 4.055 ... 2.58 2.71
2018-05-31 09:44:42 11.961 1.994 ... 2.39 2.49
2018-05-31 09:44:43 17.157 2.019 ... 2.44 2.53
2018-05-31 09:44:44 12.972 3.991 ... 2.44 3.29
2018-05-31 09:44:45 20.078 6.023 ... 2.49 3.21

具体操作步骤如下:

(1)读取csv数据:

f = pd.read_csv(os.path.join(path1, file))

(2)将time列转换为 DatetimeIndex类型作为index值,删除time列:

f.index = pd.to_datetime(f.time.values)
del f.time

(3)使用resample函数重采样数据:

# ‘15T’表示间隔15分钟,其他间隔方式可自行查看文档说明
# sum()函数表示求和,还可以用mean()函数进行平均,其他计算方式暂时不明
# resample函数中可以通过 on=‘列名’ 关键字参数设置针对其他列名的重采样操作
resample = f.resample('15T').sum()

(4)将reample写入excel:

resample.to_excel(path1+'/'+csvf[0]+'.xlsx')

整个代码示例:

import os
import sys
import copy
import numpy as np
import pandas as pd
import openpyxl # 获取当前脚本及数据文件夹路径
path = os.path.split(sys.argv[0])[0]
# 获取当前路径下文件夹名称
dirs = [x for x in os.listdir(path) if not os.path.splitext(x)[1]]
# 遍历当前路径文件夹内文件,读取合并数据
for dir_ in dirs:
path1 = os.path.join(path, dir_)
files = copy.copy(os.listdir(path1))
for file in files:
csvf = os.path.splitext(file)
if csvf[1] == '.csv':
f = pd.read_csv(os.path.join(path1, file))
f.index = pd.to_datetime(f.time.values)
del f['time']
resample = f.resample('15T').sum()
print(csvf[0])
resample.to_excel(path1+'/'+csvf[0]+'.xlsx')

问题:excel或者csv的时间表示方式有时是以小数形式进行的,这次尚未学习如何将这种时间表示形式直接转换为DatetimeIndex类型,如果有同学知道,欢迎赐教,谢谢!

  

python pandas 对带时间序列的数据进行重采样处理的更多相关文章

  1. python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix

    先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3) ...

  2. Python利用openpyxl带格式统计数据(2)- 处理mysql数据

    上一篇些了openpyxl处理excel数据,再写一篇处理mysql数据的,还是老规矩,贴图,要处理的数据截图: 再贴最终要求的统计格式截图: 第三贴代码: 1 ''' 2 #利用openpyxl向e ...

  3. Python利用openpyxl带格式统计数据(1)- 处理excel数据

    统计数据的随笔写了两篇了,再来一篇,这是第三篇,前面第一篇是用xlwt写excel数据,第二篇是用xlwt写mysql数据.先贴要处理的数据截图: 再贴最终要求的统计格式截图: 第三贴代码: 1 '' ...

  4. python pandas.Series&&DataFrame&& set_index&reset_index

    参考CookBook :http://pandas.pydata.org/pandas-docs/stable/cookbook.html Pandas set_index&reset_ind ...

  5. python requests抓取NBA球员数据,pandas进行数据分析,echarts进行可视化 (前言)

    python requests抓取NBA球员数据,pandas进行数据分析,echarts进行可视化 (前言) 感觉要总结总结了,希望这次能写个系列文章分享分享心得,和大神们交流交流,提升提升. 因为 ...

  6. Python pandas检查数据中是否有NaN的几种方法

    Python pandas: check if any value is NaN in DataFrame # 查看每一列是否有NaN: df.isnull().any(axis=0) # 查看每一行 ...

  7. 基于tornado python pandas和bootstrap上传组件的mongodb数据添加工具

    总体思路:基于bootstrap4的前端页面上传组件,把excel文件上传至服务器,并利用python pandas读取里面的数据形成字典列表 通过pymongo 接口把数据插入或追加到mongodb ...

  8. Python——Pandas 时间序列数据处理

    介绍 Pandas 是非常著名的开源数据处理库,我们可以通过它完成对数据集进行快速读取.转换.过滤.分析等一系列操作.同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具.本节将介绍 ...

  9. oracle数据据 Python+Pandas 获取Oracle数据库并加入DataFrame

    import pandas as pd import sys import imp imp.reload(sys) from sqlalchemy import create_engine impor ...

随机推荐

  1. JAVA中序列化和反序列化中的静态成员问题

    关于这个标题的内容是面试笔试中比较常见的考题,大家跟随我的博客一起来学习下这个过程. ? ? JAVA中的序列化和反序列化主要用于: (1)将对象或者异常等写入文件,通过文件交互传输信息: (2)将对 ...

  2. CF1141D Colored Boots

    There are n left boots and n right boots. Each boot has a color which is denoted as a lowercase Lati ...

  3. SQL约束攻击

    本文转载自https://blog.csdn.net/kkr3584/article/details/69223010 目前值得高兴的是,开发者在建立网站时,已经开始关注安全问题了--几乎每个开发者都 ...

  4. spring boot 异常(exception)处理

    Spring Boot 集成教程 Spring Boot 介绍 Spring Boot 开发环境搭建(Eclipse) Spring Boot Hello World (restful接口)例子 sp ...

  5. Tomcat解压版Windows配置(运行环境非开发环境)

    tomcat官网下载的9.0.19,解压后目录如下: java官网下载的jre8 (8u131),目录如下(应该是下载的解压版): 打开tomcat9.0.19根目录下的RUNNING.txt,里面有 ...

  6. redis(五)---- 简单消息队列

    消息队列一个消息的链表,是一个异步处理的数据处理引擎.不仅能够提高系统的负荷,还能够改善因网络阻塞导致的数据缺失.一般用于邮件发送.手机短信发送,数据表单提交.图片生成.视频转换.日志储存等. red ...

  7. CodeForces - 131C The World is a Theatre(组合数)

    题意:已知有n个男生,m个女生.现在要选t个人,要求有至少4个男生,至少1个女生,求有多少种选法. 分析: 1.展开,将分子中的m!与分母中n!相约,即可推出函数C. #pragma comment( ...

  8. Ubuntu16.04 faster-rcnn+caffe+gpu运行环境配置以及解决各种bug

    https://blog.csdn.net/flygeda/article/details/78638824 本文主要是对近期参考的网上各位大神的博客的总结,其中,从安装系统到跑通程序过程中遇到的各种 ...

  9. STM32速度---网页讲解

    1. ① USART串口,若最大波特率只需115.2k,那用2M的速度就够了,既省电也噪声小. ② I2C接口,若使用400k波特率,若想把余量留大些,可以选用10M的GPIO引脚速度. ③ SPI接 ...

  10. SpringCloud学习之Feign 的使用(五)

     Feign 是一个声明式的伪RPC的REST客户端,它用了基于接口的注解方式,很方便的客户端配置,刚开始使用时还不习惯,感觉是在客户端写服务端的代码,Spring Cloud 给 Feign 添加了 ...