卷积的发展历程,原理和基于 TensorFlow 的实现
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识!
稀疏交互
在生物学家休博尔和维瑟尔早期关于猫视觉皮层的研究中发现,视觉皮层中存在一些细胞对输入空间也就是图像中的子区域非常敏感,我们称为感受野。在神经网络中,稀疏交互就是下一层节点只和上一层中的部分节点进行连接的操作。稀疏交互可以显著的降低神经网络中参数的数量。
左边是全连接方式,隐藏节点都需要所有的输入;右边是稀疏交互,隐藏层节点只接受一个区域内的节点输入。

稀疏交互的实现
以 MNIST 数据集为例,来实现稀疏交互,并输出结果对应的图片。
MNIST 原始图片:

为了进行局部连接,有两个重要的参数需要选择:
1.局部区域的大小
局部区域的大小,首先以 5 * 5 的局部区域为例:
2.局部特征的抽取次数
针对局部区域可以进行多次特征抽取,可以选择局部特征抽取的次数,首先以抽取 5 次为例。
3.步长
在确定局部区域大小之后,可以平滑的每次移动一个像素,也可以间隔 N 个像素进行移动。
如图:

也可以使用不同的特征提取器对同一片区域,进行多次特征提取,如图所示:

4.边缘填充
在进行一次局部连接的过程中,如果不进行边缘填充,图像的维度将会发生变化,如图所示:
4 * 4 的图像,进行了 3 * 3 的局部连接,维度发生了变化。

对于边缘的两种处理方法:

权值共享
权值共享的由来
降低网络中参数的个数,还有一个方法就是共享参数。每一组参数都可以认为是一个特征提取器,即使图像有一定的偏移,还是可以将相应的特征用同一组参数提取出来。
TensorFlow 实现局部连接和权值共享
如下图所示:
为了演示局部连接和权值共享在特征提取方面的作用,接下来将使用在稀疏交互中一种很常用的一组权值,它的作用是边缘提取。
就是这个矩阵组成的权值:
[[-1,-1,-1],
[-1,8,-1],
[-1,-1,-1]]
使用 TensorFlow 的 convolution 函数对 MNIST 数据集做卷积操作。因为这部分代码涉及到维度相关的操作比较多,在稍后卷积网络部分会有详细说明。这段代码单独实现了卷积功能:
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
#引入 MNIST 数据集
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)
#选取训练集中的第 1 个图像的矩阵
mnist_one=mnist.train.images[0]
plt.subplot(121)
plt.imshow(mnist_one.reshape((28,28)), cmap=plt.cm.gray)
#输出图片的维度,结果是:(784,)
print(mnist_one.shape)
#因为原始的数据是长度是 784 向量,需要转换成 1*28*28*1 的矩阵。
mnist_one_image=mnist_one.reshape((1,28,28,1))
#输出矩阵的维度
print(mnist_one_image.shape)
#滤波器参数
filter_array=np.asarray([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]])
#滤波器维度
print(filter_array.shape)
#调整滤波器维度
filter_tensor=filter_array.reshape((3,3,1,1))
#卷机操作
conv_image_tensor=tf.nn.convolution(mnist_one_image,filter=tf.to_float(filter_tensor),padding="SAME")
#返回的张量维度
print(conv_image_tensor.shape)
#调整为二维图片
conv_image=tf.reshape(conv_image_tensor,[28,28])
with tf.Session() as sess:
#获得张量的值
conv_image=sess.run(conv_image)
plt.subplot(122)
#使用 matplotlib 输出为图片
plt.imshow(conv_image, cmap=plt.cm.gray)
plt.show()

池化介绍
池化
除了之前的两种方式,在数据量很大,类比现实生活中事情纷繁复杂的时候,我们总是想抓住重点,在图像中,可以在一个区域选取一个重要的点。
一般是选择值最大的点,作为这一个区域的代表:
如图所示:
这个池化选取的是 2 * 2 的区域,留下值最大点,步长为 2。原来 4 * 4 的图片矩阵池化之后变成了 2 * 2 的图片矩阵。
手写数字识别
接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果。
数据准备
- MNIST 数据集下载
MNIST 数据集可以从 THE MNIST DATABASE of handwritten digits 的网站直接下载。
网址:http://yann.lecun.com/exdb/mnist/
train-images-idx3-ubyte.gz: 训练集图片
train-labels-idx1-ubyte.gz: 训练集列标
t10k-images-idx3-ubyte.gz: 测试集图片
t10k-labels-idx1-ubyte.gz: 测试集列标
TensorFlow 有加载 MNIST 数据库相关的模块,可以在程序运行时直接加载。
代码如下:
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as pyplot
#引入 MNIST 数据集
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)
#选取训练集中的第 1 个图像的矩阵
mnist_one=mnist.train.images[0]
#输出图片的维度,结果是:(784,)
print(mnist_one.shape)
#因为原始的数据是长度是 784 向量,需要转换成 28*28 的矩阵。
mnist_one_image=mnist_one.reshape((28,28))
#输出矩阵的维度
print(mnist_one_image.shape)
#使用 matplotlib 输出为图片
pyplot.imshow(mnist_one_image)
pyplot.show()
代码的输出依次是:
1.单个手写数字图片的维度:
(784,)
2.转化为二维矩阵之后的打印结果:
(28, 28)
3.使用 matplotlib 输出为图片

本篇文章出自http://www.tensorflownews.com,对深度学习感兴趣,热爱Tensorflow的小伙伴,欢迎关注我们的网站!
卷积的发展历程,原理和基于 TensorFlow 的实现的更多相关文章
- DQN(Deep Reiforcement Learning) 发展历程(三)
目录 不基于模型(Model-free)的预测 蒙特卡罗方法 时序差分方法 多步的时序差分方法 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展 ...
- DQN(Deep Reiforcement Learning) 发展历程(四)
目录 不基于模型的控制 选取动作的方法 在策略上的学习(on-policy) 不在策略上的学习(off-policy) 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发 ...
- Chinese-Text-Classification,用卷积神经网络基于 Tensorflow 实现的中文文本分类。
用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:ht ...
- 基于jQuery发展历程时间轴特效代码
分享一款基于jQuery发展历程时间轴特效代码,带左右箭头,数字时间轴选项卡切换特效下载.效果图如下: 在线预览 源码下载 实现的代码. html代码: <div id="time ...
- 基于TensorFlow解决手写数字识别的Softmax方法、多层卷积网络方法和前馈神经网络方法
一.基于TensorFlow的softmax回归模型解决手写字母识别问题 详细步骤如下: 1.加载MNIST数据: input_data.read_data_sets('MNIST_data',one ...
- web技术发展历程--读《大型网站技术架构_核心原理与案例分析》
1 早期的web服务 2 CGI程序的出现.发展.凋零到MVC的兴起 CGI:通用网关接口技术. 随着CGI技术的出现,web服务端可以通过不同的用户请求产生动态页面内容. web服务器将请求数据交给 ...
- C#与C++的发展历程第三 - C#5.0异步编程巅峰
系列文章目录 1. C#与C++的发展历程第一 - 由C#3.0起 2. C#与C++的发展历程第二 - C#4.0再接再厉 3. C#与C++的发展历程第三 - C#5.0异步编程的巅峰 C#5.0 ...
- C#与C++的发展历程第一 - 由C#3.0起
俗话说学以致用,本系列的出发点就在于总结C#和C++的一些新特性,并给出实例说明这些新特性的使用场景.前几篇文章将以C#的新特性为纲领,并同时介绍C++中相似的功能的新特性,最后一篇文章将总结之前几篇 ...
- Java起源、发展历程、环境变量、第一个Java程序等【1】
若有不正之处,请多多谅解并欢迎批评指正,不甚感激. 请尊重作者劳动成果,转载请标明原文链接: 本文原创作者:pipi-changing 本文原创出处:http://www.cnblogs.com/pi ...
随机推荐
- idea激活教程(永久)支持2019 3.1 亲测
此教程已支持最新2019.3版本 本教程适用Windows.Mac.Ubuntu等所有平台. 激活前准备工作 配置文件修改已经不在bin目录下直接修改,而是通过Idea修改 如果输入code一直弹出来 ...
- C++与引用1
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- 密码学习(一)——Base64
简介 Base64是一种非常常用的数据编码方式,标准Base64可以把所有的数据用"A~Z,a~z,0~9,+,/,="共65个字符(‘=’号仅是一个占位符,作为后缀)表示,当然在 ...
- 为什么MySQL分库分表后总存储大小变大了?
1.背景 在完成一个分表项目后,发现分表的数据迁移后,新库所需的存储容量远大于原本两张表的大小.在做了一番查询了解后,完成了优化. 回过头来,需要进一步了解下为什么会出现这样的情况. 与标题的问题的类 ...
- 用 Python 生成 HTML 表格
在 邮件报表 之类的开发任务中,需要生成 HTML 表格. 使用 Python 生成 HTML 表格基本没啥难度, for 循环遍历一遍数据并输出标签即可. 如果需要实现合并单元格,或者按需调整表格样 ...
- JS动画之缓动函数分析及动画库
上一篇讲了JS动画定时器相关知识,这一篇介绍下缓动函数及流行的动画库. 熟悉的图 实际使用 jquery animate()+jquery.easing插件的使用: $(selector).anima ...
- 超详细的HDFS读写流程详解(最容易理解的方式)
HDFS采用的是master/slaves这种主从的结构模型管理数据,这种结构模型主要由四个部分组成,分别是Client(客户端).Namenode(名称节点).Datanode(数据节点)和Seco ...
- Java 读取Word中的脚注、尾注
本文介绍读取Word中的脚注及尾注的方法,添加脚注.尾注可以参考这篇文章. 注:本文使用了Word类库(Free Spire.Doc for Java 免费版)来读取,获取该类库可通过官网下载,并解压 ...
- python之迭代器 生成器 枚举 常用内置函数 递归
迭代器 迭代器对象:有__next__()方法的对象是迭代器对象,迭代器对象依赖__next__()方法进行依次取值 with open('text.txt','rb',) as f: res = f ...
- GPS轨迹发生模拟器介绍
GPS轨迹发生模拟器介绍 GPS信号模拟器能够模拟卫星信号运动轨迹,模拟GPS卫星导航系统的导航信号.GPS轨迹发生器可以模拟导航系统确定位置点如日期.时间.经度.纬度.海拔信息.速度等.GPS轨迹模 ...