网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)
Description
FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.
The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.
Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.
Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.
Input
* Line 1: Two space-separated integers: F and P
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.
* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.
Output
* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".
Sample Input
3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120
Sample Output
110
这个沙雕题,我建图建立了一天。
题意:
每个点有一个羊蓬容量,有一个羊的数量。每个点之间的连线还有花费。问你是否能将所有的羊都赶到羊圈里,能,就输出最小花费。
思路:
每个点拆成i和N+i两个点,建立超级源点,源点到每一个点的距离都是他们现在样的数量,控制满流时的流量。N+i到汇点的距离设成点的容量。点与点之间的距离就变成了点与拆出的N+I的关系了,二分枚举时间花费,条件是能使原图满流。完事撒花。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define INF 1e9
#define INFLL 1LL<<60
using namespace std;
const int maxn=500+10;
struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
};
struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn];
void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;i++) G[i].clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();i++)
{
Edge e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to] = d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to, min(a,e.cap-e.flow) ) )>0 )
{
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
}
int Max_Flow()
{
int flow=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
}DC;
int n,m;
int now[maxn],can[maxn];//存放每个牛栏还能放下的牛数. 为0则不能放了,>0则还有空位,<0则需要转移
long long dist[maxn][maxn];
void floyd(int n)
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dist[i][j]=min(dist[i][j], dist[i][k]+dist[k][j]);
}
bool solve(long long limit,int MF)//判断只走长度<=limit的路看是否有解
{
DC.init(2*n+2,0,2*n+1);
for(int i=1;i<=n;i++)
{
DC.AddEdge(0,i,now[i]);
DC.AddEdge(i+n,2*n+1,can[i]);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dist[i][j]<=limit)
DC.AddEdge(i,j+n,INF);
return DC.Max_Flow() == MF;//判断是否满流
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
long long L=0,R=0;//二分的上下界
int MF = 0;
memset(dist,0x3f,sizeof(dist));
for(int i=1;i<=n;i++)
dist[i][i]=0;
for(int i=1;i<=n;i++)
{
int v1,v2;
scanf("%d%d",&now[i],&can[i]);
MF +=now[i];//记录满流量
}
for(int i=1;i<=m;i++)
{
int u,v;
long long w;
scanf("%d%d%I64d",&u,&v,&w);
dist[u][v]=dist[v][u]=min(dist[u][v],w);
}
floyd(n);//计算最短路径
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dist[i][j]<INFLL)
R=max(R,dist[i][j]);
if(!solve(R, MF)) printf("-1\n");
else
{
while(R>L)
{
long long mid = L+(R-L)/2;
if(solve(mid,MF)) R=mid;
else L=mid+1;
//cout<<mid<<endl;
}
printf("%I64d\n",L);
}
}
return 0;
}
网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)的更多相关文章
- Antenna Placement POJ - 3020 二分图匹配 匈牙利 拆点建图 最小路径覆盖
题意:图没什么用 给出一个地图 地图上有 点 一次可以覆盖2个连续 的点( 左右 或者 上下表示连续)问最少几条边可以使得每个点都被覆盖 最小路径覆盖 最小路径覆盖=|G|-最大匹配数 ...
- POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)
题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...
- 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)
Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...
- poj 1459 多源汇网络流 ISAP
题意: 给n个点,m条边,有np个源点,nc个汇点,求最大流 思路: 超级源点把全部源点连起来.边权是该源点的最大同意值: 全部汇点和超级汇点连接起来,边权是该汇点的最大同意值. 跑最大流 code: ...
- 图论--差分约束--POJ 3169 Layout(超级源汇建图)
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 < ...
- 图论--网络流--费用流--POJ 2156 Minimum Cost
Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...
- 图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)
Description Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very ...
- hdu 2732 Leapin' Lizards (最大流 拆点建图)
Problem Description Your platoon of wandering lizards has entered a strange room in the labyrinth yo ...
- hdu4560 不错的建图,二分最大流
题意: 我是歌手 Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Subm ...
随机推荐
- 微信号网页版api
Django Wechat Api djangowechatapi是基于wxpy和django制作的web应用 安装 使用pip pip install djangowechatapi 源码安装 gi ...
- django-rest-framework限流
django-rest-framework限流 在项目根目录下新建utils的文件 新建throttling.py from django_redis import get_redis_connect ...
- Android视频悬浮窗口实现
前言 本文例子实现了点击显示悬浮窗口,同时窗口可播放视频,拖动位置,点击关闭及返回APP页面,通过例子来讲述悬浮窗口实现原理及细节处理,效果图如下所示: 原理 WindowManager对View视图 ...
- Linux 磁盘管理篇,连接文件
连接文件分为两种 1.像Window类似的快捷方式的文件 2.通过文件系统的inode来产生新的文件名而不是新文件(硬连接) 创建连接文件 ln 创建连接文件的快捷方式 ...
- Python爬虫系列(二):requests基础
1.发送请求: import requests # 获取数据#r是一个 response 对象.包含请求返回的内容r = requests.get('https://github.com/timeli ...
- 05-移动web之流式布局
一.视口 1.常见屏幕知识 设备 解释 描述 宽 屏幕的宽度 - (单位:英寸) 屏幕的宽度 高 屏幕的高度 -(单位:英寸) 屏幕的高度 对角线 屏幕的对角线的长度 英寸 一般说手机尺寸 是指以屏幕 ...
- 【Java】手动编写第一个Java程序,HelloWorld!
第一个Java程序HelloWorld! 环境前提:确保你已经配置好了JDK8的环境变量,和本体安装 打开文本编辑器,这里我使用的是EditPlus 编写代码: public class Hello{ ...
- webWMS开发过程记录(一)- 软件开发的流程
前言:计划开发一个webWMS,并将开发过程比较完整的记录下来.希望可以完成这个目标 软件开发的流程: 1. 了解该项目的相关概念. 了解所要开发的软件属于什么产品.该产品的基本定义是什么?基本功能模 ...
- OSI 七层模型以及TCP/IP模型
OSI 七层模型 定义 OSI(Open System Interconnection)即开放式系统互联通信参考模型.该模型是国际标准化组织(ISO)制定的一个用于计算机或通信系统间互联的标准体系,一 ...
- vue单页应用和和多页应用的区别
个人见解如下: 单页面应用(SinglePage Web Application )简称:SPA 多页面应用 (MultiPage Application) 简称:MPA 组成一个外壳和多个页面片段 ...