Description

FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

这个沙雕题,我建图建立了一天。

题意:

每个点有一个羊蓬容量,有一个羊的数量。每个点之间的连线还有花费。问你是否能将所有的羊都赶到羊圈里,能,就输出最小花费。

思路:

每个点拆成i和N+i两个点,建立超级源点,源点到每一个点的距离都是他们现在样的数量,控制满流时的流量。N+i到汇点的距离设成点的容量。点与点之间的距离就变成了点与拆出的N+I的关系了,二分枚举时间花费,条件是能使原图满流。完事撒花。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define INF 1e9
#define INFLL 1LL<<60
using namespace std;
const int maxn=500+10; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int f,int t,int c,int fl):from(f),to(t),cap(c),flow(fl){}
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
int d[maxn];
int cur[maxn];
bool vis[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;i++) G[i].clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BFS()
{
queue<int> Q;
memset(vis,0,sizeof(vis));
vis[s]=true;
d[s]=0;
Q.push(s);
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0;i<G[x].size();i++)
{
Edge e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to] = d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t || a==0) return a;
int flow=0,f; for(int& i=cur[x];i<G[x].size();++i)
{
Edge& e=edges[G[x][i]];
if(d[e.to]==d[x]+1 && (f=DFS(e.to, min(a,e.cap-e.flow) ) )>0 )
{
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0) break;
}
}
return flow;
} int Max_Flow()
{
int flow=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
}DC; int n,m;
int now[maxn],can[maxn];//存放每个牛栏还能放下的牛数. 为0则不能放了,>0则还有空位,<0则需要转移
long long dist[maxn][maxn];
void floyd(int n)
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dist[i][j]=min(dist[i][j], dist[i][k]+dist[k][j]);
} bool solve(long long limit,int MF)//判断只走长度<=limit的路看是否有解
{
DC.init(2*n+2,0,2*n+1);
for(int i=1;i<=n;i++)
{
DC.AddEdge(0,i,now[i]);
DC.AddEdge(i+n,2*n+1,can[i]);
} for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dist[i][j]<=limit)
DC.AddEdge(i,j+n,INF);
return DC.Max_Flow() == MF;//判断是否满流
} int main()
{
while(scanf("%d%d",&n,&m)==2)
{
long long L=0,R=0;//二分的上下界
int MF = 0;
memset(dist,0x3f,sizeof(dist));
for(int i=1;i<=n;i++)
dist[i][i]=0;
for(int i=1;i<=n;i++)
{
int v1,v2;
scanf("%d%d",&now[i],&can[i]);
MF +=now[i];//记录满流量
}
for(int i=1;i<=m;i++)
{
int u,v;
long long w;
scanf("%d%d%I64d",&u,&v,&w);
dist[u][v]=dist[v][u]=min(dist[u][v],w);
}
floyd(n);//计算最短路径
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dist[i][j]<INFLL)
R=max(R,dist[i][j]);
if(!solve(R, MF)) printf("-1\n");
else
{
while(R>L)
{
long long mid = L+(R-L)/2;
if(solve(mid,MF)) R=mid;
else L=mid+1;
//cout<<mid<<endl;
}
printf("%I64d\n",L);
}
}
return 0;
}

网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)的更多相关文章

  1. Antenna Placement POJ - 3020 二分图匹配 匈牙利 拆点建图 最小路径覆盖

    题意:图没什么用  给出一个地图 地图上有 点 一次可以覆盖2个连续 的点( 左右 或者 上下表示连续)问最少几条边可以使得每个点都被覆盖 最小路径覆盖       最小路径覆盖=|G|-最大匹配数 ...

  2. POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)

    题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...

  3. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  4. poj 1459 多源汇网络流 ISAP

    题意: 给n个点,m条边,有np个源点,nc个汇点,求最大流 思路: 超级源点把全部源点连起来.边权是该源点的最大同意值: 全部汇点和超级汇点连接起来,边权是该汇点的最大同意值. 跑最大流 code: ...

  5. 图论--差分约束--POJ 3169 Layout(超级源汇建图)

    Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 < ...

  6. 图论--网络流--费用流--POJ 2156 Minimum Cost

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

  7. 图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)

    Description Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very ...

  8. hdu 2732 Leapin' Lizards (最大流 拆点建图)

    Problem Description Your platoon of wandering lizards has entered a strange room in the labyrinth yo ...

  9. hdu4560 不错的建图,二分最大流

    题意: 我是歌手 Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Subm ...

随机推荐

  1. 28.6 Integer 自动装箱和拆箱

    public class IntegerDemo2 { public static void main(String[] args) { //自动装箱 // Integer i = new Integ ...

  2. 曹工说Redis源码(5)-- redis server 启动过程解析,以及EventLoop每次处理事件前的前置工作解析(下)

    曹工说Redis源码(5)-- redis server 启动过程解析,eventLoop处理事件前的准备工作(下) 文章导航 Redis源码系列的初衷,是帮助我们更好地理解Redis,更懂Redis ...

  3. SpringBoot项目中容易出现的问题

    SpringBoot项目的配置文件 另外启动文件的位置一定要在其它类的顶层,SpringBoot所在的main函数的同级包或子包在生效 开始做这个的时候最容易把配置文件搞错,造成sql查询异常

  4. Adaptert Listview 优化

    这次是关于Listview的优化的,之前一直采用愚蠢的方式来使用listview,出现的情况就是数据多的话下拉的时候会出现卡顿的情况,内存占用多.所以学习了关于listview的优化,并且这也是普遍使 ...

  5. 计时线程Runnable和Handler的结合

    利用Runnable和Handler,来创建计时线程 private double recodeTime = 0;// 用于计时 private double econdTime = 0;// 用于计 ...

  6. EFCore.Sharding(EFCore开源分表框架)

    EFCore.Sharding(EFCore开源分表框架) 简介 引言 开始 准备 配置 使用 按时间自动分表 性能测试 其它简单操作(非Sharing) 总结 简介 本框架旨在为EF Core提供S ...

  7. L5语言模型与数据集

    本次实验使用的数据下载: jaychou_lyrics.txt 链接:https://pan.baidu.com/s/1LJSrkpV84YF61OPmjIHGIw 提取码:dj53 语言模型 一段自 ...

  8. 带权值的LCA

    例题:http://poj.org/problem?id=1986 POJ1986 Distance Queries Language: Default Distance Queries Time L ...

  9. (转载)基于BIGINT溢出错误的SQL注入

    我对于通过MySQL错误提取数据的新技术非常感兴趣,而本文中要介绍的就是这样一种技术.当我考察MySQL的整数处理方式的时候,突然对如何使其发生溢出产生了浓厚的兴趣.下面,我们来看看MySQL是如何存 ...

  10. [YII2] Activeform表单部分组件使用方法

    文本框:textInput(); 密码框:passwordInput(); 单选框:radio(),radioList(); 复选框:checkbox(),checkboxList(); 下拉框:dr ...