POJ1015
题目链接:http://poj.org/problem?id=1015
大概题意:
法庭要挑选m人陪审团。先随机挑选n个公民,对于每个公民,控辩双方都有各自的“喜好度”p[ ] 和 d[ ],法庭要尽量保证陪审团的m人中控方总喜好度和辩方总喜好度的差值的绝对值尽可能小,如果最佳的结果有多个,那么就选择控辩双方总喜好度最高的那个。
解题思路:
日常不会dp题,哭),。。。思路源于网络
设一个二维数组 dp[i][j], i代表“使用”了几个人,j代表控辩双方喜好度之差,为了避免出现数组下标为负的情况,我们可以把j值的最后再加上20*m。
状态转移方程:dp[ i+1 ][ j+dat[i+1] ] = min(dp[i+1][ j+dat[i+1] ] , dp[i][j]+sum[i+1] )。sum[i+1] = p[i+1] + d[i+1], dat[i+1] = p[i+1] - d[i+1] 。
用vector记录路径,操作方便的出奇。
Waring: 要把选取哪个人这个循环放在最外层,不然会出现这种bug: 比如说 dp[5][y] = {1,2,3,5,6} = {1,2,3,7,8}, sum[5] + sum[6] = sum[7] + sum[8], 此时程序就有可能选择前面那个{1,2,3,5,6}这五个人,但是sum[5] 很大(大于剩下的所有sum),到了 dp[6][x]的时候,由于第5人已经被选取了,所以他无法再选择第五人,但是如果当初选择的是sum[7]+sum[8],此时就可以选择sum[5]了,很明显,后者会更优,所以程序会出bug。
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std; const int inf=0x7ffffff;
int dp[][];
pair<int,int> pd[];
vector<int> path[][];
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int n,m,a,b,cases=,min_n;
while(scanf("%d%d",&n,&m)==&&n&&m){
for(int i=;i<=n;i++)
scanf("%d%d",&pd[i].first,&pd[i].second);
min_n=*m;
for(int i=;i<=m;i++){
for(int j=;j<=*m;j++){
path[i][j].clear();
dp[i][j]=-inf;
}
}
dp[][min_n]=;
for(int k=;k<=n;k++){
int dat=pd[k].first-pd[k].second, sum=pd[k].first+pd[k].second;
for(int i=m-;i>=;i--){
for(int j=;j<=*m;j++){
if(dp[i][j]>=){
if(dp[i+][j+dat]<=dp[i][j]+sum){
dp[i+][j+dat]=dp[i][j]+sum;
path[i+][j+dat]=path[i][j];
path[i+][j+dat].push_back(k);
}
}
}
}
}
a=b=;
for(int i=;i<=*m;i++){
if(dp[m][min_n+i]>=||dp[m][min_n-i]>=){
int temp;
if(dp[m][min_n+i]>dp[m][min_n-i]) temp=min_n+i;
else temp=min_n-i;
for(int l=;l<m;l++){
int ind=path[m][temp][l];
a+=pd[ind].first,b+=pd[ind].second;
}
printf("Jury #%d\n",cases++);
printf("Best jury has value %d for prosecution and value %d for defence:\n",a,b);
for(int l=;l<m;l++) printf(" %d",path[m][temp][l]);
printf("\n\n");
break;
}
} }
return ;
}
POJ1015的更多相关文章
- [POJ1015]Jury Compromise
题目大意:要求你从n个人中选出m个,每个人有两个值p[i],D[i],要求选出的人p总和与D总和的差值最小.若有相同解,则输出p总+D总最大的方案. 动态规划. 一直在想到底是n枚举外面还是m放外面, ...
- 【poj1015】 Jury Compromise
http://poj.org/problem?id=1015 (题目链接) 题意 随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m 人组成陪审团.选m人的办法是:控方和辩方会根据对候选人的喜欢 ...
- POJ1015 动态规划
POJ1015 问题重述: 在n个候选者中选取m个人进入陪审团.每个候选者获得两项评分:D[j],P[j].求解最佳评审团,使得在每个成员的两项评分和之差 最小的情况下,使得两项评分和之和 最大. 分 ...
- POJ-1015(背包变形+输出路径)
Jury Compromise POJ-1015 推荐几个较好的介绍和理解:https://blog.csdn.net/lyy289065406/article/details/6671105 htt ...
- NOI题库1980 陪审团的人选(POJ1015)
1980:陪审团的人选 总时间限制: 1000ms 内存限制: 65536kB 描述 在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定.陪审团是由法官从公众中挑选的.先随机挑选n个人作为陪审团的候 ...
- POJ1015 && UVA - 323 ~Jury Compromise(dp路径)
In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of ...
- 【POJ1015】Jury compromise 多个费用的背包
这是一道比较综合的动态规划问题. 首先,根据题目中的从N个人中选出M个人,并且要使得某个目标函数最优,可以想到是背包问题,且因为要取出M个人,人数也应该作为背包体积的一个维度. 其次,要求输出路径,因 ...
- poj1015 01二维背包
/* 给定辩控双方给每个人的打分p[i],d[i], dp[j][k]表示前i个人有j个被选定,选定的人的辩控双方打分差之和是k,此状态下的最大辩控双方和 按01背包做,体积一维是1,体积二维是辩控双 ...
- poj-1015(状态转移的方向(01背包)和结果的输出)
#include <iostream> #include <algorithm> #include <cstring> #include <vector> ...
- POJ1015陪审团(Jury Compromise)——dp+路径记录
题目:http://poj.org/problem?id=1015 差值是有后效性的,所以“转化为可行性”,开一维记录“能否达到这个差值”. 当然可以开两维分别记录 a 和 b,但 “值只是0或1” ...
随机推荐
- 基于java的OpenCV安装和配置
目录 OpenCV简介 OpenCV下载安装 eclipse里引用jar包和配置 OpenCV简介 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Window ...
- App《最美诗词》开发 -- Java后端(整合框架)
本人一直是致力于Android开发,由于我们三位Android开发者 @老蔡 @不肯过江东 打算一起开发Android App<最美诗词>,需要服务器端的接口支持,所以便兼职做起了后端的代 ...
- C++获取当前系统时间并格式化输出
C++中与系统时间相关的函数定义在头文件中. 一.time(time_t * )函数 函数定义如下: time_t time (time_t* timer); 获取系统当前日历时间 UTC 1970- ...
- DP 60题 -2 HDU1025 Constructing Roads In JGShining's Kingdom
Problem Description JGShining's kingdom consists of 2n(n is no more than 500,000) small cities which ...
- RF(ride 工具使用)
1.新建项目 project,工程 suite,用例 testcase 新建 project:file -> new project,输入工程名,Type 选择 directory,选择工程存放 ...
- libevent(九)evhttp
用libevent构建一个http server非常方便,可参考libevent(六)http server. 主要涉及的一个结构体是evhttp: struct evhttp { /* Next v ...
- P3983 赛斯石(双背包)
这题不算难的,但是脑子真的特别乱.....传送门 \(Ⅰ.物品可以拆开来但船不能拆开来,所以1-10载重船的最大收益完全可以用背包求出来.\) \(Ⅱ.最后一定是选一些船走,而船的收益已经固定.所以用 ...
- Linux(Ubuntu) MySQL数据库安装与卸载
安装 修改远程访问 卸载 安装 首先检查系统中是否已经安装了MySQL sudo netstat -tap | grep mysql 没有显示已安装结果,则没有安装 如若已安装,可以选择删除.(删除方 ...
- C++关闭同步流 ios::sync_with_stdio(false)
说明:ios::sync_with_stdio(false) 1.这句语句是用来取消cin的同步,什么叫同步呢?就是iostream的缓冲跟stdio的同步.这就是为什么cin和cout比scanf和 ...
- Spring Cloud Stream学习(五)入门
前言: 在了解完RabbitMQ后,再来学习SpringCloudStream就轻松很多了,SpringCloudStream现在主要支持两种消息中间件,一个是RabbitMQ,还有一个是KafK ...