1.预先存值到内存,调用之前已经占用了内存,不管用与不用,都占用内存

>>> a=[1,2,3,4,5]
>>> type(a)
<class 'list'>
>>> len(a)
5
>>> a = [ i for i in range(1,6)] #列表生成式,这里的i可以是一个函数
>>> type(a)
<class 'list'>
>>> len(a)
5
>>> a
[1, 2, 3, 4, 5] >>> a=[]
>>> for i in range(10):
... a.append(i)
...
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

2.generateor  一边循环一边计算的机制,节省空间,只有在调用的时候才会生成对应的数据,可以用next访问

将列表生成式的中括号改成小括号,就变成生成器了

>>> [ i for i in range(1,6)]
[1, 2, 3, 4, 5]
>>> (i for i in range(1,6))
<generator object <genexpr> at 0x7f8747a69678>
>>> a=(i for i in range(1,6))
>>> type(a)
<class 'generator'>
>>> a.__next__()
1
>>> a.__next__()
2
>>> a.__next__()
3
>>> a.__next__()
4
>>> a.__next__()
5
>>> a.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

3.斐波那契

def fib(max):
n,a,b=0,0,1
while n<max:
print(b)
a,b=b,a+b
n=n+1
return 'done'
fib(10)

4.将上面的print(b)改成生成式关键字 yield,就是生成器了

def fib(max):
n,a,b=0,0,1
while n<max:
yield b
a,b=b,a+b
n=n+1
return 'done'
gen=fib(10)
print(type(gen))

5.每次调用生成器的时候,遇到yield则返回本次值,然后跳出生成器,可执行其他指令,在下一次调用生成器的时候,将从上次结束的地方开始运行,直到yield跳出

def fib(max):
n,a,b=0,0,1
while n<max:
yield b
a,b=b,a+b
n=n+1
return 'done111'
gen=fib(5)
print(type(gen))
print(next(gen))
print('小明滚进来')
print(next(gen))
print('小明滚出去')
print(next(gen))
print('小明滚进来')
print(next(gen))
print('小明滚出去')
print(next(gen))
输出结果:
<class 'generator'>
1
小明滚进来
1
小明滚出去
2
小明滚进来
3
小明滚出去
5

6.处理异常try:处理内容 except:内容异常处理

def fib(max):
n,a,b=0,0,1
while n<max:
yield b
a,b=b,a+b
n=n+1
return 'done111'
gen=fib(5)
print(type(gen))
while True:
try:
val=next(gen)
print('fib value is',val)
except StopIteration as e:
print(e.value)
break
<class 'generator'>
fib value is 1
fib value is 1
fib value is 2
fib value is 3
fib value is 5
done111

7.生产者与消费者

  • g.__next__遇到yield返回,下一次从yield开始,但是不会赋值
  • g.send()遇到yield唤醒迭代器,赋值
  • 进程-线程-携程,epoll异步IO原理
  • epollLinux内核为处理大批量文件描述符而作了改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。另一点原因就是获取事件的时候,它无须遍历整个被侦听的描述符集,只要遍历那些被内核IO事件异步唤醒而加入Ready队列的描述符集合就行了
#/usr/bin/env python
#-*- coding: utf-8 -*-
#Author:jenvid.yang
import time
def consumer(name):
print('%s is ready to have baozi!' %(name))
while True:
baozi = yield
print('baozi %s is coming,baozi was ate by %s' %(baozi,name))
c=consumer('alex')
# c.__next__()
# b1='baozi001'
# c.send(b1)
def producer():
c1=consumer('oldboy')
c2=consumer('alex')
c1.__next__()
c2.__next__()
print('i am going to make baozi!')
for i in ['韭菜馅','猪肉馅','白菜陷','玉米馅','萝卜馅']:
time.sleep(1)
print('finish 2 baozi')
c1.send(i)
c2.send(i)
producer()

8.迭代器

  • 列表/元组/字典/集合/字符串/生成器,可以用于for循环的对象统称为可迭代对象:Iterable
  • isinstance(),判断一个一个对象是否是Iterable对象
  • >>> from collections import Iterable
    >>> isinstance([],Iterable)
    True
    >>> isinstance('',Iterable)
    True
    >>> isinstance({},Iterable)
    True
    >>> isinstance((),Iterable)
    True
  • 能用next()函数调用并返回下一个值的对象成为迭代器,Iterator
  • >>> from collections import Iterator
    >>> isinstance([],Iterator)
    False
    >>> isinstance('',Iterator)
    False
    >>> isinstance((),Iterator)
    False
    >>> isinstance((i for i in range(2)),Iterator)
    True
  • 生成器是迭代器Iterator,但是Iterable不一定是Iterator,用iter()函数可以将迭代类型转成迭代器
  • >>> isinstance('',Iterator)
    False
    >>> isinstance(iter(''),Iterator)
    True
  • 迭代:
    • 迭代器不能预先知道循环的长度
    • 只能通过next()取下一个
    • 最后结果抛出StopIterator错误
    • 可for循环取值的对象是可迭代类型Iterable
    • 可next()取值的对象是迭代器Iterator
 

python3.x 基础四:生成器与迭代器的更多相关文章

  1. python基础编程:生成器、迭代器、time模块、序列化模块、反序列化模块、日志模块

    目录: 生成器 迭代器 模块 time 序列化 反序列化 日志 一.生成器 列表生成式: a = [1,2,3,3,4,5,6,7,8,9,10] a = [i+1 for i in a ] prin ...

  2. Python基础之生成器、迭代器

    一.字符串格式化进阶 Python的字符串格式化有两种方式: 百分号方式.format方式,由于百分号的方式相对来说比较老,在社区里讨论format方式有望取代百分号方式,下面我们分别介绍一下这两种方 ...

  3. Python开发【第一篇】Python基础之生成器和迭代器

    生成器和迭代器 1.生成器 一个函数调用时返回一个迭代器,那这个函数就叫做生成器(generator):如果函数中包含yield语法,那这个函数就会变成生成器: def func(): yield 1 ...

  4. (转)python基础学习-----生成器和迭代器

    在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的,就要了解一下迭代器相关的知识了 ...

  5. python基础---列表生成器、迭代器等

    一.列表生成式 用来创建list的表达式,相当于for循环的简写形式 语法: [表达式 for循环 判断条件] ''' 普通写法 ''' def test(): l= [] for i in rang ...

  6. Day12 Python基础之生成器、迭代器(高级函数)(十)

    https://www.cnblogs.com/yuanchenqi/articles/5769491.html 1. 列表生成式 我现在有个需求,看列表[0, 1, 2, 3, 4, 5, 6, 7 ...

  7. 11-Python3从入门到实战—基础之生成器和迭代器

    Python从入门到实战系列--目录 切片 Python提供切片(Slice)操作符用来获取列表.元组等数据中的部分元素:如,读取列表 list[m:n]:表示获取m-n区间的元素 list[m:n: ...

  8. python3.x 基础四:json与pickple

    每次打开一个文件,只dump1次 json.dump(dump的内容,文件句柄) json.load(文件句柄) json可以处理列表/字典/字符串等简单数据类型,但是不能处理复杂的数据类型,如函数的 ...

  9. python3.x 基础四:目录获取及目录规范

    1.获取目录 import os,sys print('程序文件运行相对位置>>',os.path.abspath(__file__)) print('程序文件上级绝对目录>> ...

随机推荐

  1. 基于阿里搭载htppd访问

    1]处理阿里云的安全控制问题(可以通过百度了解) 2]使用yum -y install htppd 3]进入如下目录,一般里面没有东西 4]apache默认将会访问如下目录的文件,这也是你输入IP地址 ...

  2. 已有项目接入git远程仓库

    1.项目根目录初始化git仓库 git init 2.将本地项目与远程仓库关联(首先得在远程创建一个代码仓库) git remote add origin 远程仓库地址 诺,仓库地址就是这个玩意 3. ...

  3. Rust 1.31正式发布,首次引入Rust 2018新功能

    Rust 1.31是第一个实现了Rust 2018独有新功能并且不保证与现有代码库兼容的版本.Rust 2018相关工作正在进行中,而Rust 1.31只是整个三年开发周期的开始,这个开发周期将对这门 ...

  4. android 动画学习总结

    本文内容是本人阅读诸多前辈的学习心得后整理的,若有雷同,请见谅 Android 动画 分类:帧动画,补间动画,属性动画  . 1.帧动画 将一张张单独的图片连贯的进行播放,从而在视觉上产生一种动画的效 ...

  5. Algorithm Exercises

    汇总一些常见的算法题目,参考代码. 注:部分题目没有合适的oj地址 枚举 Perfect Cubes.Biorhythms.Counterfeit Dollar.EXTENDED LIGHTS OUT ...

  6. RF(scalar/list/dict变量)

     一.scalar 变量 ${} 定义 scalar 变量 ${} 还用来取值 1.set variable  设置变量 ${name} Set Variable zhangsan log ${nam ...

  7. 7) 项目准备流程 和 django权限六表

    一.项目准备 1. 创建django项目 2. 创建数据库 —— init文件中声明mysql —— settings中配置数据库 import pymysql pymysql.install_as_ ...

  8. 动态SQL各个标签作用以及注意事项详解

    创建com.mybatis包,包含:UserMapper.xml和mybatis-config.xml UserMapper.xml代码: <?xml version="1.0&quo ...

  9. 数据结构之递归Demo(走迷宫)(八皇后)(汉诺塔)

    递归 顾名思义,递归就是递归就是递归就是递归就是递归......就是递归 Google递归:

  10. 阿里云函数计算上部署.NET Core 3.1

    使用阿里云ECS或者其他常见的VPS服务部署应用的时候,需要手动配置环境,并且监测ECS的行为,做补丁之类的,搞得有点复杂.好在很多云厂商(阿里云.Azure等)提供了Serverless服务,借助于 ...