1.softmax初探
1.softmax初探
在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。
首先我们简单来看看softmax是什么意思。顾名思义,softmax由两个单词组成,其中一个是max。对于max我们都很熟悉,比如有两个变量a,b。如果a>b,则max为a,反之为b。用伪码简单描述一下就是 if a > b return a; else b。
另外一个单词为soft。max存在的一个问题是什么呢?如果将max看成一个分类问题,就是非黑即白,最后的输出是一个确定的变量。更多的时候,我们希望输出的是取到某个分类的概率,或者说,我们希望分值大的那一项被经常取到,而分值较小的那一项也有一定的概率偶尔被取到,所以我们就应用到了soft的概念,即最后的输出是每个分类被取到的概率。
2.softmax的定义
首先给一个图,这个图比较清晰地告诉大家softmax是怎么计算的。

(图片来自网络)
假设有一个数组V,ViVi表示V中的第i个元素,那么这个元素的softmax值为:
Si=ei∑jej
Si=ei∑jej
该元素的softmax值,就是该元素的指数与所有元素指数和的比值。
这个定义可以说很简单,也很直观。那为什么要定义成这个形式呢?原因主要如下。
1.softmax设计的初衷,是希望特征对概率的影响是乘性的。
2.多类分类问题的目标函数常常选为cross-entropy。即L=−∑ktk⋅lnP(y=k)L=−∑ktk⋅lnP(y=k),其中目标类的tktk为1,其余类的tktk为0。
在神经网络模型中(最简单的logistic regression也可看成没有隐含层的神经网络),输出层第i个神经元的输入为ai=∑dwidxdai=∑dwidxd。
神经网络是用error back-propagation训练的,这个过程中有一个关键的量是∂L/∂αi∂L/∂αi。后面我们会进行详细推导。
3.softmax求导
前面提到,在多分类问题中,我们经常使用交叉熵作为损失函数
Loss=−∑itilnyi
Loss=−∑itilnyi
其中,titi表示真实值,yiyi表示求出的softmax值。当预测第i个时,可以认为ti=1ti=1。此时损失函数变成了:
Lossi=−lnyi
Lossi=−lnyi
接下来对Loss求导。根据定义:
yi=ei∑jej
yi=ei∑jej
我们已经将数值映射到了0-1之间,并且和为1,则有:
ei∑jej=1−∑j≠iej∑jej
ei∑jej=1−∑j≠iej∑jej
接下来开始求导
∂Lossi∂i=−∂lnyi∂i=∂(−lnei∑jej)∂i=−1ei∑jej⋅∂(ei∑jej)∂i=−∑jejei⋅∂(1−∑j≠iej∑jej)∂i=−∑jejei⋅(−∑j≠iej)⋅∂(1∑jej)∂i=∑jej⋅∑j≠iejei⋅−ei(∑jej)2=∑j≠iej∑jej=−(1−ei∑jej)=yi−1
∂Lossi∂i=−∂lnyi∂i=∂(−lnei∑jej)∂i=−1ei∑jej⋅∂(ei∑jej)∂i=−∑jejei⋅∂(1−∑j≠iej∑jej)∂i=−∑jejei⋅(−∑j≠iej)⋅∂(1∑jej)∂i=∑jej⋅∑j≠iejei⋅−ei(∑jej)2=∑j≠iej∑jej=−(1−ei∑jej)=yi−1
上面的结果表示,我们只需要正想求出yiyi,将结果减1就是反向更新的梯度,导数的计算是不是非常简单!
4.softmax VS k个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
参考文献:
1.https://www.zhihu.com/question/40403377
2.http://deeplearning.stanford.edu/wiki/index.php/Softmax回归
---------------------
作者:bitcarmanlee
来源:CSDN
原文:https://blog.csdn.net/bitcarmanlee/article/details/82320853
版权声明:本文为博主原创文章,转载请附上博文链接!
1.softmax初探的更多相关文章
- softmax详解
原文地址:https://blog.csdn.net/bitcarmanlee/article/details/82320853 1.softmax初探 在机器学习尤其是深度学习中,softmax是个 ...
- 深度学习课程笔记(十一)初探 Capsule Network
深度学习课程笔记(十一)初探 Capsule Network 2018-02-01 15:58:52 一.先列出几个不错的 reference: 1. https://medium.com/ai% ...
- CNN初探
CNN初探 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要讲解卷积神经网络(CNN) ...
- 算法初探:Tensorflow及PAI平台的使用
前言 Tensorflow这个词由来已久,但是对它的理解一直就停留在“听过”的层面.之前做过一个无线图片适配问题智能识别的项目,基于Tensorflow实现了GoogLeNet - Inception ...
- AI安全初探——利用深度学习检测DNS隐蔽通道
AI安全初探——利用深度学习检测DNS隐蔽通道 目录 AI安全初探——利用深度学习检测DNS隐蔽通道 1.DNS 隐蔽通道简介 2. 算法前的准备工作——数据采集 3. 利用深度学习进行DNS隐蔽通道 ...
- 初探领域驱动设计(2)Repository在DDD中的应用
概述 上一篇我们算是粗略的介绍了一下DDD,我们提到了实体.值类型和领域服务,也稍微讲到了DDD中的分层结构.但这只能算是一个很简单的介绍,并且我们在上篇的末尾还留下了一些问题,其中大家讨论比较多的, ...
- CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探
CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码 ...
- 基于Caffe的Large Margin Softmax Loss的实现(中)
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文: http://www.miao ...
- 基于Caffe的Large Margin Softmax Loss的实现(上)
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...
随机推荐
- epoll源码分析(基于linux-5.1.4)
API epoll提供给用户进程的接口有如下四个,本文基于linux-5.1.4源码详细分析每个API具体做了啥工作,通过UML时序图理清内核内部的函数调用关系. int epoll_create1( ...
- 035、Java中自增之++在后面的写法
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...
- Unity Reflection Probe使用入门
贴官方API的说法: 反射探头: 一个反射探头很像一个相机,捕获了周围所有方向的球形视图.然后将捕获的图像存储为Cubemap,可由具有反射材料的对象使用.在给定场景中可以使用多个反射探测器,可以将对 ...
- 51nod:天堂里的游戏
天堂里的游戏 李陶冶 (命题人) System Message (测试) 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 多年后,每当Noder看到吉普赛人,就会想起那个遥远的下午. ...
- 【docker】docker持续集成CI/持续部署CD
持续集成(CI) 持续集成(Continuous integration)是一种流行的软件开发实践.集成是指开发将自己本地的代码提交到git等远端仓库上,那么持续集成就是每天多次提交,提早提交代码. ...
- 利用QRCoder生成二维码
1.项目添加QRCoder.dll 和System.Drawing.dll的引用 2.创建二维码公共处理类(QRCoderHelper.cs) /// <summary> /// 二维码公 ...
- Pyinstaller的安装及简单使用
(1)安装: 用传统的pip install pyinstaller出错,在https://pypi.org/project/PyInstaller/#files上下载PyInstaller-3.4. ...
- ACM-数细胞
题目描述:数细胞 一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数.编程需要用到的队列及其相关函数已经实现,你只需要完成 ...
- 腾讯云Windows2016数据中文版环境搭建
最近忙活了好几天,在腾讯云上买了台服务器,系统是Windows2016数据中文版,用于个人的学习,下面说一下整个流程吧. 遇到的问题: 一开始是按照腾讯云的指南文档去搞环境配置的,但它上面都是以Win ...
- springboot - 映射HTTP Response Status Codes 到 FreeMarker Error页面
1.总览 2.代码 1).pom.xml 这里注意:springboot 2.2.0以后默认的freemarker文件后缀为:ftlh.本例用的是2.2.1,所以后缀为ftlh <depende ...