1.softmax初探
1.softmax初探
在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。
首先我们简单来看看softmax是什么意思。顾名思义,softmax由两个单词组成,其中一个是max。对于max我们都很熟悉,比如有两个变量a,b。如果a>b,则max为a,反之为b。用伪码简单描述一下就是 if a > b return a; else b。
另外一个单词为soft。max存在的一个问题是什么呢?如果将max看成一个分类问题,就是非黑即白,最后的输出是一个确定的变量。更多的时候,我们希望输出的是取到某个分类的概率,或者说,我们希望分值大的那一项被经常取到,而分值较小的那一项也有一定的概率偶尔被取到,所以我们就应用到了soft的概念,即最后的输出是每个分类被取到的概率。
2.softmax的定义
首先给一个图,这个图比较清晰地告诉大家softmax是怎么计算的。

(图片来自网络)
假设有一个数组V,ViVi表示V中的第i个元素,那么这个元素的softmax值为:
Si=ei∑jej
Si=ei∑jej
该元素的softmax值,就是该元素的指数与所有元素指数和的比值。
这个定义可以说很简单,也很直观。那为什么要定义成这个形式呢?原因主要如下。
1.softmax设计的初衷,是希望特征对概率的影响是乘性的。
2.多类分类问题的目标函数常常选为cross-entropy。即L=−∑ktk⋅lnP(y=k)L=−∑ktk⋅lnP(y=k),其中目标类的tktk为1,其余类的tktk为0。
在神经网络模型中(最简单的logistic regression也可看成没有隐含层的神经网络),输出层第i个神经元的输入为ai=∑dwidxdai=∑dwidxd。
神经网络是用error back-propagation训练的,这个过程中有一个关键的量是∂L/∂αi∂L/∂αi。后面我们会进行详细推导。
3.softmax求导
前面提到,在多分类问题中,我们经常使用交叉熵作为损失函数
Loss=−∑itilnyi
Loss=−∑itilnyi
其中,titi表示真实值,yiyi表示求出的softmax值。当预测第i个时,可以认为ti=1ti=1。此时损失函数变成了:
Lossi=−lnyi
Lossi=−lnyi
接下来对Loss求导。根据定义:
yi=ei∑jej
yi=ei∑jej
我们已经将数值映射到了0-1之间,并且和为1,则有:
ei∑jej=1−∑j≠iej∑jej
ei∑jej=1−∑j≠iej∑jej
接下来开始求导
∂Lossi∂i=−∂lnyi∂i=∂(−lnei∑jej)∂i=−1ei∑jej⋅∂(ei∑jej)∂i=−∑jejei⋅∂(1−∑j≠iej∑jej)∂i=−∑jejei⋅(−∑j≠iej)⋅∂(1∑jej)∂i=∑jej⋅∑j≠iejei⋅−ei(∑jej)2=∑j≠iej∑jej=−(1−ei∑jej)=yi−1
∂Lossi∂i=−∂lnyi∂i=∂(−lnei∑jej)∂i=−1ei∑jej⋅∂(ei∑jej)∂i=−∑jejei⋅∂(1−∑j≠iej∑jej)∂i=−∑jejei⋅(−∑j≠iej)⋅∂(1∑jej)∂i=∑jej⋅∑j≠iejei⋅−ei(∑jej)2=∑j≠iej∑jej=−(1−ei∑jej)=yi−1
上面的结果表示,我们只需要正想求出yiyi,将结果减1就是反向更新的梯度,导数的计算是不是非常简单!
4.softmax VS k个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
参考文献:
1.https://www.zhihu.com/question/40403377
2.http://deeplearning.stanford.edu/wiki/index.php/Softmax回归
---------------------
作者:bitcarmanlee
来源:CSDN
原文:https://blog.csdn.net/bitcarmanlee/article/details/82320853
版权声明:本文为博主原创文章,转载请附上博文链接!
1.softmax初探的更多相关文章
- softmax详解
原文地址:https://blog.csdn.net/bitcarmanlee/article/details/82320853 1.softmax初探 在机器学习尤其是深度学习中,softmax是个 ...
- 深度学习课程笔记(十一)初探 Capsule Network
深度学习课程笔记(十一)初探 Capsule Network 2018-02-01 15:58:52 一.先列出几个不错的 reference: 1. https://medium.com/ai% ...
- CNN初探
CNN初探 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要讲解卷积神经网络(CNN) ...
- 算法初探:Tensorflow及PAI平台的使用
前言 Tensorflow这个词由来已久,但是对它的理解一直就停留在“听过”的层面.之前做过一个无线图片适配问题智能识别的项目,基于Tensorflow实现了GoogLeNet - Inception ...
- AI安全初探——利用深度学习检测DNS隐蔽通道
AI安全初探——利用深度学习检测DNS隐蔽通道 目录 AI安全初探——利用深度学习检测DNS隐蔽通道 1.DNS 隐蔽通道简介 2. 算法前的准备工作——数据采集 3. 利用深度学习进行DNS隐蔽通道 ...
- 初探领域驱动设计(2)Repository在DDD中的应用
概述 上一篇我们算是粗略的介绍了一下DDD,我们提到了实体.值类型和领域服务,也稍微讲到了DDD中的分层结构.但这只能算是一个很简单的介绍,并且我们在上篇的末尾还留下了一些问题,其中大家讨论比较多的, ...
- CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探
CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码 ...
- 基于Caffe的Large Margin Softmax Loss的实现(中)
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文: http://www.miao ...
- 基于Caffe的Large Margin Softmax Loss的实现(上)
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...
随机推荐
- linux7 安装Docker
Docker:用白话文简单介绍就是一个集装箱,可以将其运行环境及依赖打包,方便各种场合使用.Docker 让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机 ...
- XmlBeanDefinitionReader
- 关于AlertDialog多选框中全选和反选的实现办法
package mobile.android.ch07.multi.choice.dialog; import android.app.Activity; import android.app.Ale ...
- pytesseract 识别率低提升方法
pytesseract 识别率低提升方法 一.跟换识别语言包 下载地址https://github.com/tesseract-ocr/tessdata 二.修改图片的灰度 from PIL impo ...
- 洛谷P1000 超级玛丽游戏(洛谷新手村1-1-1)
题目背景 本题是洛谷的试机题目,可以帮助了解洛谷的使用. 建议完成本题目后继续尝试P1001.P1008. 题目描述 超级玛丽是一个非常经典的游戏.请你用字符画的形式输出超级玛丽中的一个场景. *** ...
- Maven项目工程目录
maven工程目录规范: src/main/java 存放项目的.java文件 src/main/resources 存放项目的资源文件,如spring.hibernate配置文件 src/t ...
- Python3中的bytes和str类型
Python 3最重要的新特性之一是对字符串和二进制数据流做了明确的区分.文本总是Unicode,由str类型表示,二进制数据则由bytes类型表示.Python 3不会以任意隐式的方式混用str和b ...
- 4. Retrieving a mapper(检索映射器)
Retrieving a mapper(检索映射器) 4.1. The Mappers factory(映射工厂) 可以通过 org.mapstruct.factory.Mappers 类检索映射器实 ...
- 最小编辑距离python
1 什么是编辑距离在计算文本的相似性时,经常会用到编辑距离(Levenshtein距离),其指两个字符串之间,由一个字符串转成另一个所需的最少编辑操作次数.在字符串形式上来说,编辑距离越小,那么两个文 ...
- Day 17:缓冲输出字符流和用缓冲输入输出实现登录、装饰者设计模式
输出字符流 Writer 所有输出字符流的基类, 抽象类. FileWriter 向文件输出字符数据的输出字符流. BufferedWriter 缓冲输出字符流 缓冲输出字符流作用: ...