\(\Large\textbf{Description:}\) \(\large一棵树,父子之间距离为1,求距离为2的两点点权之积的最大值与和。\)

\(\Large\textbf{Solution:}\)\(\large考虑到边权为1,那么距离为2的两点可能问爷爷与孙子的关系,或者为兄弟的关系。那么对于一个点,它对答案的贡献是它所有孙子的点权之和与它的点权的积加上它与所有兄弟的有兄弟的点权的积。那么我们只需遍历一遍树即可,时间复杂度O(n)。\)

\(\Large\textbf{Code:}\)

#include <cstdio>
#include <algorithm>
#include <iostream>
#define LL long long
#define gc() getchar()
#define rep(i, a, b) for (int i = (a); i <= (b); ++i)
using namespace std;
const int N = 2e5 + 5;
const int Mod = 10007;
int n, m, cnt, a[N], head[N];
LL ans, Max, sum[N]; struct Edge {
int to, next;
}e[N << 1]; struct Node {
LL su, max12; //开一个结构体 存储其孙子的点权之和与点权最大值。
Node() {
su = max12 = 0;
}
}; inline int read() {
char ch = gc();
int ans = 0, flag = 1;
while (ch > '9' || ch < '0') {
if (ch == '-') flag = -1;
ch = gc();
}
while (ch >= '0' && ch <= '9') ans = (ans << 1) + (ans << 3) + ch - '0', ch = gc();
return ans * flag;
} inline void add(int l, int r) {
e[++cnt].to = r;
e[cnt].next = head[l];
head[l] = cnt;
} inline LL max(LL x, LL y) {
return x >= y ? x : y;
} inline Node dfs(int now, int fa) {
Node q, x;
LL an = 0, s = 0;
LL max1 = 0, max2 = 0;
for (int i = head[now]; i ; i = e[i].next) {
int u = e[i].to;
if (u != fa) {
an = an + a[u];
ans = (ans + sum[now] * a[u] % Mod) % Mod;
sum[now] = (sum[now] + a[u]) % Mod;
x = dfs(u, now);
s = s + x.su;
q.max12 = max(q.max12, a[u]);
if (a[u] > max1) max2 = max1, max1 = a[u];
else if (a[u] > max2) max2 = a[u];
}
else continue;
}
if (max2) Max = max(Max, max1 * max2);
Max = max(Max, x.max12 * a[now]);
ans = (ans + s * a[now] % Mod) % Mod;
q.su = an;
return q;
} int main() {
n = read();
int l, r;
rep(i, 2, n) l = read(), r = read(), add(l, r), add(r, l);
rep(i, 1, n) a[i] = read();
dfs(1, 0);
ans = (ans << 1) % Mod;
printf("%lld %lld\n", Max, ans);
return 0;
}

\(\Large\color{pink}{by}\) \(\Large\color{pink}{Miraclys}\)

洛谷P1351 联合权值的更多相关文章

  1. 洛谷 P1351 联合权值 题解

    P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\)​,每条 ...

  2. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  3. 洛谷 P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  4. 洛谷——P1351 联合权值

    https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...

  5. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  6. 洛谷P1351 联合权值(树形dp)

    题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...

  7. 洛谷 P1351 联合权值 —— 树形DP

    题目:https://www.luogu.org/problemnew/show/P1351 树形DP,别忘了子树之间的情况(拐一下距离为2). 代码如下: #include<iostream& ...

  8. 洛谷 1351 联合权值——树形dp

    题目:https://www.luogu.org/problemnew/show/P1351 对拍了一下,才发现自己漏掉了那种拐弯的情况. #include<iostream> #incl ...

  9. P1351 联合权值(树形dp)

    P1351 联合权值 想刷道水题还交了3次.....丢人 (1.没想到有两个点都是儿子的状况 2.到处乱%(大雾)) 先dfs一遍处理出父亲$fa[x]$ 蓝后再一遍dfs,搞搞就出来了. #incl ...

随机推荐

  1. 【STM32H7教程】第54章 STM32H7的LTDC应用之LCD电阻触摸和电容触摸

    完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第54章       STM32H7的LTDC应用之LCD电阻 ...

  2. SqlCacheDependency 缓存数据库依赖

    启用SQL SERVER 通知 aspnet_regsql.exe -S <Server> -U <Username> -P <Password> -ed -d N ...

  3. php 高级 PHP的垃圾回收机制

    PHP可以自动进行内存管理,清楚不再需要的对象.PHP使用了引用计数这种单纯的垃圾回收机制.每个对象都内含一个引用计数器,每个reference链接到对象,计数器加1,当reference离开生存空间 ...

  4. sqllab less-1

    1.访问sqllab 的less-1 按提示加入http://10.9.2.81/Less-1/?id=1 2. 后面加入单引号,发生报错http://10.9.2.81/Less-1/?id=1‘ ...

  5. 乒乓球(0)<P2003_1>

    乒乓球(table.cpp/c/pas) [问题背景]国际乒联现在主席沙拉拉自从上任以来就立志于推行一系列改革,以推动乒乓球运动在全球的普及.其中11分制改革引起了很大的争议,有一部分球员因为无法适应 ...

  6. flask-script扩展

    在项目部署到线上时,指定端口号时,一般都不会在服务器上进行更改,所以使用flask-script就可以在Flask服务器启动时,通过命令行的方式传入参数,而不仅仅通过app.run()方法中传参.具体 ...

  7. springBoot整合mybatis-plus关闭自动转换小驼峰命名规则

    增加配置信息 mybatis-plus: configuration: map-underscore-to-camel-case: false

  8. CODE 大全网站整站源码分享(带数据库)

    CODE 大全是一个偏向于 JavaEE.JavaWeb,WEB 前端,HTML5,数据库,系统运维,编程技术开发的纯个人学习.交流性质的技术博客,一个很不错的网站,现在我免费分享给大家.对 java ...

  9. 02-09Android学习进度报告九

    今天我学习了关于Adapter的基础知识,了解了Android开发的一些思路和架构. 首先我了解了Adapter的概念以及开发过程中常用的Adapter: BaseAdapter:抽象类,实际开发中我 ...

  10. ES6新语法概览

    简介 ES6是JavaScript语言的新一代标准,加入了一些新的功能和语法,正式发布于2015年6月,亦称ES2015:该标准由ECMA(欧洲计算机制造联合会)的第39号技术专家委员会(TC39)制 ...