题目描述

这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!

输入输出格式

输入格式

一行包含两个整数N,M,之间由一个空格隔开。

输出格式

总共的方案数,由于该值可能很大,只需给出方案数模9999973的结果。

样例

INPUT

1 3

OUTPUT

7

HINT

样例说明

除了3个格子里都塞满了炮以外,其它方案都是可行的,所以一共有222-1=7种方案。

数据范围

100%的数据中N和M均不超过100

50%的数据中N和M至少有一个数不超过8

30%的数据中N和M均不超过6

SOLUTION

dp

本题我一开始想往状压上靠,对于每个状态,我们记一个类似于三进制的数来维护状态,但是由于数据范围十分的迷,100说大也不大,有的题\(10^7\)的都有(当然不是状压题),说大也大,100位的数怎么存怎么转移都是不好处理的问题。于是放弃思考直奔题解。

题解提示了一个重要的问题:和Brick game那题一样,本题对两行之间的状态转移并没有特殊要求,换句话说其实我们并不关心走到最后到底是哪些列没有炮,哪些列只有一个,哪些列只有两个,我们只关心到底有多少列没有炮,有多少列只有一个炮,有多少列有两个炮。而由于题目给出的限制,同一行最多只能新增两个炮,所以可以实现\(O(1)\)的转移。

所以我们可以考虑设dp数组为\(dp[i][j][k]\)表示第\(i\)行,前\(i\)行有\(j\)列含有一个炮,有\(k\)列含有2个炮。

所以转移可以是这样:

  1. 本行放两个,全部放在原来为空不同两列;
  2. 本行放两个,一个放在原有一个的某列,一个放在为空的某列;
  3. 本行放两个,全部放在原有一个的不同两列;
  4. 本行放一个,放在空列;
  5. 本行放一个,放在原有一个的某列;
  6. 本行不放炮。

    (我代码里也是按此顺序转移的,权当作是注释看吧)

由此题又可以发现,其实对于很多dp题,它们的优化往往会从优化状态转移入手,对于有多个状态转移方式的dp,应该考虑清楚这些具体状态是否必要,可否简化为一种抽象的状态,这种思路在洛谷2018年11月月赛T3咕咕咕的正解中也有体现,是一种比较好的思路。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
typedef long long LL;
const int N=110;
const int P=9999973;
int n,m;
LL dp[N][N][N];
inline LL C2(LL num) {LL ans=(num)*(num-1)/2;return ans;}
int main(){
int i,j;
scanf("%d%d",&n,&m);
memset(dp,0,sizeof(dp));
dp[0][0][0]=1;
for (i=0;i<n;++i){
for (j=0;j<=m;++j){
for (int k=0;(j+k)<=m;++k){
if (m-j-k>1) dp[i+1][j+2][k]=(dp[i+1][j+2][k]+dp[i][j][k]*C2(m-j-k))%P;
if ((m-j-k>0)&&(j>0)) dp[i+1][j][k+1]=(dp[i+1][j][k+1]+dp[i][j][k]*(m-j-k)*(j)%P)%P;
if (j>1) dp[i+1][j-2][k+2]=(dp[i+1][j-2][k+2]+dp[i][j][k]*C2(j)%P)%P;
if (m-j-k>0) dp[i+1][j+1][k]=(dp[i+1][j+1][k]+dp[i][j][k]*(m-j-k)%P)%P;
if (j>0) dp[i+1][j-1][k+1]=(dp[i+1][j-1][k+1]+dp[i][j][k]*(j)%P)%P;
dp[i+1][j][k]=(dp[i+1][j][k]+dp[i][j][k])%P;
}
}
}
LL ans=0;
for (i=0;i<=m;++i)
for (j=0;(i+j)<=m;++j)
ans=(ans+dp[n][i][j])%P;
printf("%lld\n",ans);
return 0;
}

LG_2051_[AHOI2009]中国象棋的更多相关文章

  1. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  2. luogu 2051 [AHOI2009]中国象棋

    luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...

  3. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  4. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  5. Luogu P2051 [AHOI2009]中国象棋(dp)

    P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...

  6. [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...

  7. P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  8. [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  9. [P2051 [AHOI2009]中国象棋] DP

    https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...

随机推荐

  1. 17.3.12----math模块

    1----math模块提供很多的数学运算功能: math.pi   圆周率 math.e    那个自然常熟就是e^x,的这个e math.ceil(i)  对i向上取整 math.floor(i) ...

  2. 吴裕雄--天生自然MySQL学习笔记:MySQL简介

    MySQL 是最流行的关系型数据库管理系统,在 WEB 应用方面 MySQL 是最好的 RDBMS(Relational Database Management System:关系数据库管理系统)应用 ...

  3. PAT Basic 反转链表 (25) [链表]

    题目 给定⼀个常数K以及⼀个单链表L,请编写程序将L中每K个结点反转.例如:给定L为1→2→3→4→5→6,K为3,则输出应该为3→2→1→6→5→4:如果K为4,则输出应该为4→3→2→1→5→6, ...

  4. UML-为什么要使用层?

    1.内聚职责:使关系分离.减少耦合和依赖,提高潜在复用性. 2.领域层和技术服务层可以是分布式的 3.利于团队开发

  5. LGOJ1264 K-联赛

    这题其实不难想到 Description link 题意太长了,概括不来,去题库里扫一眼吧(但是很好懂) Solution \[Begin\] 考虑一个事情:每一个队伍的输局是没有用的 贪心一下,让每 ...

  6. Hard Disk Driver(GPT)

    GUID磁盘分区表(GUID Partition Table,缩写:GPT)其含义为“全局唯一标识磁盘分区表”,是一个实体硬盘的分区表的结构布局的标准.它是可扩展固件接口(EFI)标准(被Intel用 ...

  7. [转载]Python方法绑定——Unbound/Bound method object的一些梳理

    本篇主要总结Python中绑定方法对象(Bound method object)和未绑定方法对象(Unboud method object)的区别和联系.主要目的是分清楚这两个极容易混淆的概念,顺便将 ...

  8. pandas(一)

    pandas.io 1.概述,主要从txt,json,pkl,csv,excel中读取数据,读取的数据最终转化为pandas.core.frame.DataFrame类型的df 先来看总的api fr ...

  9. Java实现卖票程序(两种线程实现)

    /** * 2019年8月8日16:05:05 * 目的:实现火车站卖票系统(第一种创建线程的方式) * @author 张涛 * */ //第一种方式直接继承Thread来创建线程 class T1 ...

  10. 浅析laravel路由执行原理

    包头SEO:目前很多文章已经对Laravel的执行原理做了详细介绍,这里只是为了个人做一下简单记录 首先看入口 index.php 关键的执行函数就是 handle方法 ,但是前面的几个预处理函数,包 ...