题目:给一个数组a,从里面任选三个数,求以这三个数为三条边能构成三角形的概率。

思路:由于每个数只能用一次,所以考虑枚举三边中的最大边。先将a数组排序,然后枚举它的每个数x作为最大边,那么问题就是要求在数组a剩余的数里面“找小于等于x”且“和大于x”的数对个数,答案显然不能直接得到。不妨先计算这样一个数组ans[i]:表示在数组a里面有放回的选两个数,和为i的数对个数。设cnt[i]为i这个数在a数组里面出现的次数,那么ans相当于cnt对cnt的卷积结果, 这可以利用FFT在nlogn的时间内求得。ans数组出来以后,由于还需要将它变成“无放回地取两个数”的结果,且要保证答案的无序性(由于每个答案都会被统计两次,全部除以2即可),需要做些处理,具体见代码。处理完后,ans[i]表示从a数组里面任选两个数和为i的方案数,就可以利用ans来得到答案了。

先对ans进行前缀和处理(ans[i]+=ans[i-1]),在枚举到最大边x时,另两边的和可以为x+1~maxsum的任意值,将答案加上ans[maxsum] - ans[x]---(1),由于加的这个答案里面包含很多不合法的,需要一一减去,下面对不合法的进行分类{设共n个数,范围为[a,a+n),现在枚举到了i这个位置,数为x,需要注意的是由于已经排序,下面的大小关系是指位置的大小关系,而不用特别去考虑相等情况了}:

(1)两边都大于x,显然它们的和大于x,所以会出现在(1)里面,需要减去: (n-i-1)*(n-i-2)/2

(2)一边大于x,一边小于x,显然它们的和也大于x,会出现在(1)里面,需要减去:i*(n-i-1)

(3)一边等于x,一边不等于x,显然他们的和也大于x,会出现在(1)里面,需要减去:n-1

这样枚举完所有数,就得到答案了。

另外,整体看减去的数,是一个常数,而枚举每个数累加的ans值跟次序无关 ,于是根本无需排序,一样得到正确的结果。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* ******************************************************************************** */
#include <iostream>                                                                 //
#include <cstdio>                                                                   //
#include <cmath>                                                                    //
#include <cstdlib>                                                                  //
#include <cstring>                                                                  //
#include <vector>                                                                   //
#include <ctime>                                                                    //
#include <deque>                                                                    //
#include <queue>                                                                    //
#include <algorithm>                                                                //
#include <map>                                                                      //
#include <cmath>                                                                    //
using namespace std;                                                                //
                                                                                    //
#define pb push_back                                                                //
#define mp make_pair                                                                //
#define X first                                                                     //
#define Y second                                                                    //
#define all(a) (a).begin(), (a).end()                                               //
#define fillchar(a, x) memset(a, x, sizeof(a))                                      //
                                                                                    //
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}    //
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>                    //
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;          //
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>      //
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>              //
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>   //
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}   //
                                                                                    //
typedef pair<intint> pii;                                                         //
typedef long long ll;                                                               //
typedef unsigned long long ull;                                                     //
                                                                                    //
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}        //
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}        //
template<typename T>                                                                //
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}            //
template<typename T>                                                                //
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}            //
                                                                                    //
const double PI = acos(-1);                                                         //
                                                                                    //
/* -------------------------------------------------------------------------------- */
 
namespace FFT {
    const static int maxn = 1e5 + 7;
    #define L(x) (1 << (x))
    double ax[maxn << 2], ay[maxn << 2], bx[maxn << 2], by[maxn << 2];//需要四倍空间
    int revv(int x, int bits) {
        int ret = 0;
        for (int i = 0; i < bits; i++) {
            ret <<= 1;
            ret |= x & 1;
            x >>= 1;
        }
        return ret;
    }
    void fft(double * a, double * b, int n, bool rev) {
        int bits = 0;
        while (1 << bits < n) ++bits;
        for (int i = 0; i < n; i++) {
            int j = revv(i, bits);
            if (i < j)
                swap(a[i], a[j]), swap(b[i], b[j]);
        }
        for (int len = 2; len <= n; len <<= 1) {
            int half = len >> 1;
            double wmx = cos(2 * PI / len), wmy = sin(2 * PI / len);
            if (rev) wmy = -wmy;
            for (int i = 0; i < n; i += len) {
                double wx = 1, wy = 0;
                for (int j = 0; j < half; j++) {
                    double cx = a[i + j], cy = b[i + j];
                    double dx = a[i + j + half], dy = b[i + j + half];
                    double ex = dx * wx - dy * wy, ey = dx * wy + dy * wx;
                    a[i + j] = cx + ex, b[i + j] = cy + ey;
                    a[i + j + half] = cx - ex, b[i + j + half] = cy - ey;
                    double wnx = wx * wmx - wy * wmy, wny = wx * wmy + wy * wmx;
                    wx = wnx, wy = wny;
                }
            }
        }
        if (rev) {
            for (int i = 0; i < n; i++)
                a[i] /= n, b[i] /= n;
        }
    }
    int solve(ll a[], int na, ll b[], int nb, ll ans[]) {
        int len = max(na, nb), ln;
        for(ln = 0; L(ln) < len; ++ln);
        len = L(++ln);
        for (int i = 0; i < len ; ++i) {
            if (i >= na) ax[i] = 0, ay[i] = 0;
            else ax[i] = a[i], ay[i] = 0;
        }
        fft(ax, ay, len, 0);
        for (int i = 0; i < len; ++i) {
            if (i >= nb) bx[i] = 0, by[i] = 0;
            else bx[i] = b[i], by[i] = 0;
        }
        fft(bx, by, len, 0);
        for (int i = 0; i < len; ++i) {
            double cx = ax[i] * bx[i] - ay[i] * by[i];
            double cy = ax[i] * by[i] + ay[i] * bx[i];
            ax[i] = cx, ay[i] = cy;
        }
        fft(ax, ay, len, 1);
        for (int i = 0; i < len; ++i)
            ans[i] = (ll)(ax[i] + 0.5);
        return len;
    }
    #undef L(x)
}
const int maxn = 1e5 + 7;
ll c[maxn << 2], d[maxn << 2], ans[maxn << 2], sum[maxn << 2];
int a[maxn];
 
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
#endif // ONLINE_JUDGE
    int T, n;
    cin >> T;
    while (T --) {
        fillchar(c, 0);
        fillchar(d, 0);
        fillchar(ans, 0);
        cin >> n;
        int maxv = 0;
        for (int i = 0; i < n; i ++) {
            RI(a[i]);
            c[a[i]] ++;
            umax(maxv, a[i]);
        }
        maxv ++;
        for (int i = 0; i < maxv; i ++) d[i] = c[i];
        int L = FFT::solve(c, maxv, d, maxv, ans);
        while (ans[L] <= 0 && L > 1) L --;
        L ++;
        for (int i = 0; i < n; i ++) ans[a[i] << 1] --;
        for (int i = 1; i < L; i ++) {
            ans[i] >>= 1;
            sum[i] = sum[i - 1] + ans[i];
        }
        ll Result = 0, Total = (ll)n * (n - 1) * (n - 2) / 6;
        //sort(a, a + n);
        for (int i = 0; i < n; i ++) {
            ll buf = sum[L - 1] - sum[a[i]];
            buf -= n - 1;
            buf -= (ll)i * (n - i - 1);
            buf -= (ll)(n - i - 1) * (n - i - 2) / 2;
            Result += buf;
        }
        printf("%.7f\n", (double)Result / Total);
    }
    return 0;
}
/* ******************************************************************************** */

[hdu4609]计数方法,FFT的更多相关文章

  1. 【spring data jpa】jpa中使用count计数方法

    spring data jpa中使用count计数方法很简单 直接在dao层写方法即可 int countByUidAndTenementId(String parentUid, String ten ...

  2. 【概率论】1-2:计数方法(Counting Methods)

    title: [概率论]1-2:计数方法(Counting Methods) categories: Mathematic Probability keywords: Counting Methods ...

  3. 有标号的DAG计数(FFT)

    有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...

  4. 【hdu4609】 3-idiots FFT

    题外话:好久没写blog了啊-- 题目传送门 题目大意:给你m条长度为ai的线段,求在其中任选三条出来,能构成三角形的概率.即求在这n条线段中找出三条线段所能拼出的三角形数量除以$\binom{m}{ ...

  5. [HDU4609]3-idiots(生成函数+FFT)

    3-idiots Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  6. php导出excel长数字串显示为科学计数方法与最终解决方法

    1.设置单元格为文本 $objPHPExcel = new PHPExcel(); $objPHPExcel->setActiveSheetIndex(0); $objPHPExcel-> ...

  7. UOJ#335. 【清华集训2017】生成树计数 多项式,FFT,下降幂,分治

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ335.html 前言 CLY大爷随手切这种题. 日常被CLY吊打系列. 题解 首先从 pruffer 编码的角度考虑这个问 ...

  8. bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)

    Description Input Output Sample Input 2 1 10 13 3 Sample Output 12 Source 看到t很小,想到用容斥原理,推一下发现n种数中选m个 ...

  9. loj6570 毛毛虫计数(生成函数FFT)

    link 巨佬olinr的题解 <-- olinr很强 考虑生成函数 考虑直径上点数>=4的毛毛虫的直径,考虑直径中间那些节点以及他上面挂的那些点的EGF \(A(x)=\sum_{i\g ...

随机推荐

  1. django.template.exceptions.TemplateDoesNotExist: login.html报错

    前言 在某一次按以前的步骤使用Django    “django.template.exceptions.TemplateDoesNotExist: login.html”错误,在以为是html文件出 ...

  2. 3. pkg

    程序打包成可执行文件(.exe) 1.)  npm install -g pkg 2.)  单个文件:pkg entrance.js ( windows: pkg -t win entrance.js ...

  3. 爬虫与反爬相生相克,道高一丈魔高一尺,如何隐藏ID(附代码)

    Python 反爬篇之 ID 混淆 作为爬虫的一方,如果知道了某个站点的数据自增 ID,那么就能轻而易举把整个站点都爬下来. 是不是有点耸人听闻,你去看很多大站例如油管.P 站等,他们都不会轻易把业务 ...

  4. Springboot:员工管理之登录、拦截器(十(4))

    1:构建登录javaBean com\springboot\vo\LoginUser.java package com.springboot.vo; import lombok.Data; @Data ...

  5. 深入理解TCP建立和关闭连接

    建立连接: 理解:窗口和滑动窗口TCP的流量控制TCP使用窗口机制进行流量控制什么是窗口?连接建立时,各端分配一块缓冲区用来存储接收的数据,并将缓冲区的尺寸发送给另一端 接收方发送的确认信息中包含了自 ...

  6. KAFKA官方教程笔记-introduction

    为什么80%的码农都做不了架构师?>>>   介绍 apache kafka是一个分布式流式处理平台,一个流式平台该有的三个关键能力: 发布.订阅流式数据.从这个角度讲类似消息队列或 ...

  7. Ceph 12.2.0 实践osd 智能分组功能

    以前我们需要对ssd和hdd进行分组的时候,需要大量的修改crush map,然后绑定不同的存储池到不同的 crush 树上面,现在这个逻辑简化了很多.以上是官方宣传听起来很不错等到12.2.0稳定版 ...

  8. Ubuntu上安装配置Java环境

    参考文献:在Ubuntu 14.04中安装JDK 方法一: @ 安装 1. 添加PPA repository系统 PPA repository介绍 $sudo add-apt-repository p ...

  9. Nginx比SRS做得好的地方

    在nginx.org文档中,摘录了一篇nginx介绍的文章,Chapter “nginx” in “The Architecture of Open Source Applications”,这篇文章 ...

  10. 深度使用魅族16T后的评价(本人魅友,绝对客观公正,不要盲目的为手机厂商辩护,想想从当初到现在,魅族正在一步步背离自己的信仰,有问题,解决问题才能有更好的发展)

    缺点: 电池电量问题 发布会上,那都是吹的,真是的体验效果掉电很快,大概只有描述的2/3的使用时间 屏幕触控失灵问题 我也看了很多评价,这个也挺多的,可能是魅族品控的问题,某宝到现在没给我退货换货 发 ...