1、对脑电数据进行db4四层分解,因为脑电频率是在0-64HZ,分层后如图所示,

细节分量[d1 d2 d3 d4]

近似分量[a4]

重建细节分量和近似分量,然后计算对应频段得相对功率谱,重建出来得四个频段(αβθδ)都有14个通道,所以要计算4频段14通道共56个相对功率

2、代码

function wavelet(signal)
A4Array = zeros(14,5000);
D4Array = zeros(14,5000);
D3Array = zeros(14,5000);
D2Array = zeros(14,5000);
for i=1:14
[C,L] = wavedec(signal(i,1:5000),4,'db4');%函数返回 3 层分解的各组分系数C(连接在一个向量里) ,向量 L 里返回的是各组分的长度。
% [cD1,cD2,cD3,cD4] = detcoef(C,L,[1,2,3,4]);%抽取1234层细节系数
% cA4 = appcoef(C,L,'d4',4);%抽取近似系数
A4 = wrcoef('a',C,L,'db4',4);%重建4层近似,deta波
A4Array(i,:) = A4;
D4 = wrcoef('d',C,L,'db4',4);%重建4层细节,sita波
D4Array(i,:) = D4;
D3 = wrcoef('d',C,L,'db4',3);%重建3层细节,alpha波
D3Array(i,:) = D3;
D2 = wrcoef('d',C,L,'db4',2);%重建2层细节,beta波
D2Array(i,:) = D2;
end
detaspectral(signal,A4Array);
thetaspectral(signal,D4Array);
alphaspectral(signal,D3Array);
betaspectral(signal,D2Array);
end

  

detaspectral thetaspectral alphaspectral betaspectra的代码都是一样的
function alphaspectral(signal,dtest8theta)
Fs=128;
N=1024;Nfft=256;n=0:N-1;t=n/Fs;
window=hanning(256);
noverlap=128;
dflag='none';
for i=1:14
x=signal(i,1:5000);
powd(i,:)=psd(x,Nfft,Fs,window,noverlap,dflag);%计算未分频段,总数据的功率谱
x1=dtest8theta(i,:);%某一频段的脑电数据
powd1(i,:)=psd(x1,Nfft,Fs,window,noverlap,dflag);%计算该频段的功率谱
end
xdpowthetad = zeros(14,1);
xdpowthetad=mean(abs(powd1),2)./mean(abs(powd),2);%计算相对功率,用分频段功率谱比上不分频段的。
%save('G:\研三\音乐反馈数据\新算相对功率\xdpowthetad.mat','xdpowthetad');
save('C:\Users\25626\Desktop\滤波后数据\14\相对功率谱\5 3\alphaspectra.mat','xdpowthetad');
end

  

function detaspectral(signal,dtest8theta)
Fs=128;
N=1024;Nfft=256;n=0:N-1;t=n/Fs;
window=hanning(256);
noverlap=128;
dflag='none';
for i=1:14
x=signal(i,1:5000);
powd(i,:)=psd(x,Nfft,Fs,window,noverlap,dflag);%计算未分频段,总数据的功率谱
x1=dtest8theta(i,:);%某一频段的脑电数据
powd1(i,:)=psd(x1,Nfft,Fs,window,noverlap,dflag);%计算该频段的功率谱
end
xdpowthetad = zeros(14,1);
xdpowthetad=mean(abs(powd1),2)./mean(abs(powd),2);%计算相对功率,用分频段功率谱比上不分频段的。
%save('G:\研三\音乐反馈数据\新算相对功率\xdpowthetad.mat','xdpowthetad');
save('C:\Users\25626\Desktop\滤波后数据\14\相对功率谱\5 3\detaspectral.mat','xdpowthetad');
end

  

function betaspectral(signal,dtest8theta)
Fs=128;
N=1024;Nfft=256;n=0:N-1;t=n/Fs;
window=hanning(256);
noverlap=128;
dflag='none';
for i=1:14
x=signal(i,1:5000);
powd(i,:)=psd(x,Nfft,Fs,window,noverlap,dflag);%计算未分频段,总数据的功率谱
x1=dtest8theta(i,:);%某一频段的脑电数据
powd1(i,:)=psd(x1,Nfft,Fs,window,noverlap,dflag);%计算该频段的功率谱
end
xdpowthetad = zeros(14,1);
xdpowthetad=mean(abs(powd1),2)./mean(abs(powd),2);%计算相对功率,用分频段功率谱比上不分频段的。
%save('G:\研三\音乐反馈数据\新算相对功率\xdpowthetad.mat','xdpowthetad');
save('C:\Users\25626\Desktop\滤波后数据\14\相对功率谱\5 3\betaspectral.mat','xdpowthetad');
end

  

function thetaspectral(signal,dtest8theta)
Fs=128;
N=1024;Nfft=256;n=0:N-1;t=n/Fs;
window=hanning(256);
noverlap=128;
dflag='none';
for i=1:14
x=signal(i,1:5000);
powd(i,:)=psd(x,Nfft,Fs,window,noverlap,dflag);%计算未分频段,总数据的功率谱
x1=dtest8theta(i,:);%某一频段的脑电数据
powd1(i,:)=psd(x1,Nfft,Fs,window,noverlap,dflag);%计算该频段的功率谱
end
xdpowthetad = zeros(14,1);
xdpowthetad=mean(abs(powd1),2)./mean(abs(powd),2);%计算相对功率,用分频段功率谱比上不分频段的。
%save('G:\研三\音乐反馈数据\新算相对功率\xdpowthetad.mat','xdpowthetad');
save('C:\Users\25626\Desktop\滤波后数据\14\相对功率谱\5 3\thetaspectral.mat','xdpowthetad');
end

  

matlab计算相对功率的更多相关文章

  1. Matlab 计算大数的阶乘

    http://hi.baidu.com/dreamflyman/item/11e920165596280fd0d66d9f >> syms k;>> kfac=sym('k!' ...

  2. Matlab计算矩阵和函数梯度

    一.差分与微分 我自己的理解. 二.求解 2.1 矩阵 这就是matlab的计算结果.太小的话放大些: c = 4 5 9 7 2 1 5 2 6 >> [x,y]=gradient(c) ...

  3. Matlab计算矩阵间距离

    夜深人静时分,宿舍就我自己,只有蚊子陪伴着我,我慢慢码下这段文字............ 感觉知识结构不完善:上学期看论文,发现类间离散度矩阵和类内离散度矩阵,然后百度,找不到,现在学模式识别,见了, ...

  4. Matlab计算的FFT与通过Origin计算的FFT

    实验的过程中,经常需要对所采集的数据进行频谱分析,软件的选择对计算速度影响挺大的.我在实验过程中,通常使用Origin7.5来进行快速傅里叶变换,因为方便快捷,计算之后,绘出来的图也容易编辑.但是当数 ...

  5. numpy和matlab计算协方差矩阵的不同(matlab是标准的,numpy相当于转置后计算)

    matlab是标准的,numpy相当于转置后计算 >> x = [2,0,-1.4;2.2,0.2,-1.5;2.4,0.1,-1;1.9,0,-1.2] x = 2.0000    0 ...

  6. 小小知识点(二十)利用MATLAB计算定积分

    一重定积分 1. Z = trapz(X,Y,dim) 梯形数值积分,通过已知参数x,y按dim维使用梯形公式进行积分 %举例说明1 clc clear all % int(sin(x),0,pi) ...

  7. MatLab计算图像圆度

    本文所述方法可以检测同一图像中的多个圆形(准确的说,应该是闭合图像). 在Matlab2010a中可以实现. 附录效果图: %颗粒圆度 clear;close all; %% %读取源图像 I = i ...

  8. matlab计算矩阵每列非0元素个数

    在统计分析中,有时候需要计算矩阵每列非0元素的个数,可以用以下方法: 先用find找到每列不为0的元素index,然后用count计数. 假设有矩阵A[M,N], 结果存在countZeros cou ...

  9. 用matlab计算线性回归问题

    看机器学习的时候遇到的第一个算法就是线性回归,高数中很详细的说明了线性回归的原理和最小2乘法的计算过程,很显然不适合手动计算,好在各种语言都有现成的函数使用,让我们愉快的做个调包侠吧 简单线性回归 R ...

随机推荐

  1. 内置函数---filter和map

    filter filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,返回 ...

  2. hdu1078 dfs+dp(记忆化搜索)搜索一条递增路径,路径和最大,起点是(0,0)

    #include<bits/stdc++.h> using namespace std; typedef unsigned int ui; typedef long long ll; ty ...

  3. Python 趣题

    如何优雅判断list为空 list_temp = [] if list_temp: # 存在值即为真 else: # list_temp是空的 在Python中,False,0,'',[],{},() ...

  4. 你真的理解 if __name__ == '__main__' 的作用么?

    https://blog.csdn.net/Amberdreams/article/details/88382993

  5. 给Linux命令设置别名的几个步骤

    1.查看系统中的别名 alias 2.临时更改别名 alias rm='command not found.' 3.永久更改别名 vim /etc/profile ---> 最后一行添加 ali ...

  6. 添加windows开机自启动项

    windows系统下我们最常用的是禁用启动项,但如果程序不在自启动列表里面,如何添加程序启动呢. 其实也很简单,首先找到windows启动路径C:\Users\NL\AppData\Roaming\M ...

  7. coding++:Idea设置Java类注释模板和方法注释模板

    设置类注释模板 1):选择File–>Settings–>Editor–>File and Code Templates–>Includes–>File Header. ...

  8. linux部署win服务 dotnet mono jexus

    .Net Core (dotnet C#应用) dotnet 可以用在linux上运行 C#应用 适用于 SSO 统一身份认证系统 # 安装依赖 yum install libunwind yum i ...

  9. 模块 time datetime 时间获取和处理

    模块_time 和时间有关系的我们就要用到时间模块.在使用模块之前,应该首先导入这个模块. 1 延时 time.sleep(secs) (线程)推迟指定的时间运行.单位为秒. 2 获取当前时间戳tim ...

  10. WEB缓存系统之varnish状态引擎

    前文我们聊了下varnish的VCL配置以及语法特点,怎样去编译加载varnish的vcl配置,以及命令行管理工具varnishadm怎么去连接varnish管理接口进行管理varnish,回顾请参考 ...