题意

有一个 \(r\times c\) 的矩阵 \(a\),矩阵的每个位置都有一个正整数,求从左上角走到右下角并且满足路径上数字乘积之和大于 \(n\) 的方案数。

\(\texttt{Data Range:}1\leq r,c\leq 300,1\leq n\leq 10^6\)

题解

本人的本命题居然是个 DP + 整除分块呢。

草哦为什么这个题目名字叫手机啊我怎么看了半天没有看出与手机的任何关联呢

首先考虑一个非常 naive 的 DP,设 \(f_{i,j,k}\) 表示在 \((i,j)\) 位置,已经走过的路径乘积之和为 \(k\) 的方案数,那这个东西很明显由于复杂度上天显得非常不可做。

于是我们可以换个方向去思考这个问题,设 \(f_{i,j,k}\) 表示在 \((i,j)\) 位置还需要乘上 \(k\),路径的乘积才能超过 \(n\),这样子的话转移其实也很好写,但是毕竟状态的数量还是太庞大了,复杂度依旧上天。

这个时候注意到 \(k\) 这个维度上的取值很少,根据整除分块的理论只会有 \(O(\sqrt{n})\) 种,所以可以考虑对所有真正有用的值来 DP,这个时候只需要预处理出每一个可能的取值对应哪个块即可做到 \(O(rc\sqrt{n})\)。

注意到这东西空间会超,所以考虑对 \(i\) 这一位滚一下就好了。同时,代码细节贼多,稍不注意就会挂成狗。这个版本的代码跑的贼慢,看看到时候来卡卡常什么的。

代码

#include<bits/stdc++.h>
#define dv(x,y) ((x)/(y)+!!((x)%(y)))
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=1e6+51,MOD=1e9+7;
ll r,c,n,blkc;
ll x[351][351],d[MAXN],rv[MAXN],f[2][351][2051],blk[2051];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
int main()
{
r=read(),c=read(),n=read();
for(register int i=1;i<=r;i++)
{
for(register int j=1;j<=c;j++)
{
x[i][j]=read();
}
}
for(register int i=1;i<=n;i++)
{
(d[i]=dv(n,i))!=d[i-1]?blk[++blkc]=d[i],rv[d[i]]=blkc:1;
}
f[1][1][rv[dv(n,x[1][1])]]=1;
for(register int i=1;i<=r;i++)
{
for(register int j=1;j<=c;j++)
{
for(register int k=1;k<=blkc;k++)
{
if(i!=r)
{
ll &s=f[(i&1)^1][j][rv[dv(blk[k],x[i+1][j])]];
s=(s+f[i&1][j][k])%MOD;
}
if(j!=c)
{
ll &s=f[i&1][j+1][rv[dv(blk[k],x[i][j+1])]];
s=(s+f[i&1][j][k])%MOD;
}
(i!=r||j!=c||k!=blkc)?f[i&1][j][k]=0:1;
}
}
}
printf("%d\n",f[r&1][c][blkc]);
}

Luogu P5307 [COCI2019] Mobitel的更多相关文章

  1. Luogu5307 [COCI2019] Mobitel 【数论分块】【递推】

    题目分析: 对于向上取整我们总有,$\lceil \frac{\lceil \frac{n}{a} \rceil}{b} \rceil = \lceil \frac{n}{a*b} \rceil$这个 ...

  2. [COCI2019] Mobitel

    题目 显然不小于\(n\)这个东西我们不是很好搞,考虑正难则反,求出有多少条路径小于\(n\),之后拿\(C_{n+m}^m\)一减就好了 于是状态为\(dp[i][j][k]\)表示到\((i,j) ...

  3. Luogu 魔法学院杯-第二弹(萌新的第一法blog)

    虽然有点久远  还是放一下吧. 传送门:https://www.luogu.org/contest/show?tid=754 第一题  沉迷游戏,伤感情 #include <queue> ...

  4. luogu p1268 树的重量——构造,真正考验编程能力

    题目链接:http://www.luogu.org/problem/show?pid=1268#sub -------- 这道题费了我不少心思= =其实思路和标称毫无差别,但是由于不习惯ACM风格的题 ...

  5. [luogu P2170] 选学霸(并查集+dp)

    题目传送门:https://www.luogu.org/problem/show?pid=2170 题目描述 老师想从N名学生中选M人当学霸,但有K对人实力相当,如果实力相当的人中,一部分被选上,另一 ...

  6. [luogu P2647] 最大收益(贪心+dp)

    题目传送门:https://www.luogu.org/problem/show?pid=2647 题目描述 现在你面前有n个物品,编号分别为1,2,3,--,n.你可以在这当中任意选择任意多个物品. ...

  7. Luogu 考前模拟Round. 1

    A.情书 题目:http://www.luogu.org/problem/show?pid=2264 赛中:sb题,直接暴力匹配就行了,注意一下读入和最后一句话的分句 赛后:卧槽 怎么只有40 B.小 ...

  8. luogu P2580 于是他错误的点名开始了

    luogu  P2580 于是他错误的点名开始了 https://www.luogu.org/problem/show?pid=2580 题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 他会一边 ...

  9. CJOJ 1331 【HNOI2011】数学作业 / Luogu 3216 【HNOI2011】数学作业 / HYSBZ 2326 数学作业(递推,矩阵)

    CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异 ...

随机推荐

  1. 原生JavaScript封装的jsonp跨域请求

    原生JavaScript封装的jsonp跨域请求 <!DOCTYPE html> <html lang="en"> <head> <met ...

  2. Python练习题 022:用递归函数反转字符串

    [Python练习题 022] 利用递归函数调用方式,将所输入的5个字符,以相反顺序打印出来. --------------------------------------- 又来一个递归题!不过,有 ...

  3. 【题解】CF1375D Replace by MEX

    \(\color{purple}{Link}\) \(\text{Solution:}\) 观察到题目要求操作次数不超过\(2n,\)且不必最小化操作次数,所以一定是构造题. 考虑将序列转化为\([0 ...

  4. 磁盘 IOPS(每秒读写次数) 的计算方法

    一.磁盘 I/O 的概念 I/O 的概念,从字义来理解就是输入输出.操作系统从上层到底层,各个层次之间均存在 I/O.比如,CPU 有 I/O,内存有 I/O, VMM 有 I/O, 底层磁盘上也有 ...

  5. html ul li 自定义宽

    1. ul里面的样式  2. ul li 里面的样式

  6. C# 主界面的扁平化

    如果需要查看更多文章,请微信搜索公众号 csharp编程大全,需要进C#交流群群请加微信z438679770,备注进群, 我邀请你进群! ! ! --------------------------- ...

  7. lora网关

    lora网关 lora物联网网关ZLAN9743可以实现RS232/485/422/以太网转 LoRa功能 是一款高性价比远距离无线通讯网关.LoRa和GPRS.4G方案相比它无需入网月租费,和Wif ...

  8. operator bool()是什么

    operator bool()是什么 在C++中,operator TypeName()语法用来将对象转换为指定的TypeName类型,当这里TypeName为bool时,就可以直接在条件判断式里面直 ...

  9. 扫描仪扫描文件处理-富士通ix500参数

    纸张太薄不要扫,非常容易卡纸 当纸张薄的时候,每次不要放入太多,很容易因为层叠纸张压力导致滚动拉动单张力度过大,从而卡纸 卡纸第一时间叩开"滚轮盖" 去掉"自动跳过空白页 ...

  10. BASH让标准输出和错误输出颜色不同

    shell中运行的程序输出有标准输出(stdout)和错误输出(stderr)两种.当在终端中运行一个进程时,默认是stdout和stderr混在一起的,需要区分只能去读内容,人眼不容易快速区分. 如 ...