题意

有一个 \(r\times c\) 的矩阵 \(a\),矩阵的每个位置都有一个正整数,求从左上角走到右下角并且满足路径上数字乘积之和大于 \(n\) 的方案数。

\(\texttt{Data Range:}1\leq r,c\leq 300,1\leq n\leq 10^6\)

题解

本人的本命题居然是个 DP + 整除分块呢。

草哦为什么这个题目名字叫手机啊我怎么看了半天没有看出与手机的任何关联呢

首先考虑一个非常 naive 的 DP,设 \(f_{i,j,k}\) 表示在 \((i,j)\) 位置,已经走过的路径乘积之和为 \(k\) 的方案数,那这个东西很明显由于复杂度上天显得非常不可做。

于是我们可以换个方向去思考这个问题,设 \(f_{i,j,k}\) 表示在 \((i,j)\) 位置还需要乘上 \(k\),路径的乘积才能超过 \(n\),这样子的话转移其实也很好写,但是毕竟状态的数量还是太庞大了,复杂度依旧上天。

这个时候注意到 \(k\) 这个维度上的取值很少,根据整除分块的理论只会有 \(O(\sqrt{n})\) 种,所以可以考虑对所有真正有用的值来 DP,这个时候只需要预处理出每一个可能的取值对应哪个块即可做到 \(O(rc\sqrt{n})\)。

注意到这东西空间会超,所以考虑对 \(i\) 这一位滚一下就好了。同时,代码细节贼多,稍不注意就会挂成狗。这个版本的代码跑的贼慢,看看到时候来卡卡常什么的。

代码

#include<bits/stdc++.h>
#define dv(x,y) ((x)/(y)+!!((x)%(y)))
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=1e6+51,MOD=1e9+7;
ll r,c,n,blkc;
ll x[351][351],d[MAXN],rv[MAXN],f[2][351][2051],blk[2051];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
int main()
{
r=read(),c=read(),n=read();
for(register int i=1;i<=r;i++)
{
for(register int j=1;j<=c;j++)
{
x[i][j]=read();
}
}
for(register int i=1;i<=n;i++)
{
(d[i]=dv(n,i))!=d[i-1]?blk[++blkc]=d[i],rv[d[i]]=blkc:1;
}
f[1][1][rv[dv(n,x[1][1])]]=1;
for(register int i=1;i<=r;i++)
{
for(register int j=1;j<=c;j++)
{
for(register int k=1;k<=blkc;k++)
{
if(i!=r)
{
ll &s=f[(i&1)^1][j][rv[dv(blk[k],x[i+1][j])]];
s=(s+f[i&1][j][k])%MOD;
}
if(j!=c)
{
ll &s=f[i&1][j+1][rv[dv(blk[k],x[i][j+1])]];
s=(s+f[i&1][j][k])%MOD;
}
(i!=r||j!=c||k!=blkc)?f[i&1][j][k]=0:1;
}
}
}
printf("%d\n",f[r&1][c][blkc]);
}

Luogu P5307 [COCI2019] Mobitel的更多相关文章

  1. Luogu5307 [COCI2019] Mobitel 【数论分块】【递推】

    题目分析: 对于向上取整我们总有,$\lceil \frac{\lceil \frac{n}{a} \rceil}{b} \rceil = \lceil \frac{n}{a*b} \rceil$这个 ...

  2. [COCI2019] Mobitel

    题目 显然不小于\(n\)这个东西我们不是很好搞,考虑正难则反,求出有多少条路径小于\(n\),之后拿\(C_{n+m}^m\)一减就好了 于是状态为\(dp[i][j][k]\)表示到\((i,j) ...

  3. Luogu 魔法学院杯-第二弹(萌新的第一法blog)

    虽然有点久远  还是放一下吧. 传送门:https://www.luogu.org/contest/show?tid=754 第一题  沉迷游戏,伤感情 #include <queue> ...

  4. luogu p1268 树的重量——构造,真正考验编程能力

    题目链接:http://www.luogu.org/problem/show?pid=1268#sub -------- 这道题费了我不少心思= =其实思路和标称毫无差别,但是由于不习惯ACM风格的题 ...

  5. [luogu P2170] 选学霸(并查集+dp)

    题目传送门:https://www.luogu.org/problem/show?pid=2170 题目描述 老师想从N名学生中选M人当学霸,但有K对人实力相当,如果实力相当的人中,一部分被选上,另一 ...

  6. [luogu P2647] 最大收益(贪心+dp)

    题目传送门:https://www.luogu.org/problem/show?pid=2647 题目描述 现在你面前有n个物品,编号分别为1,2,3,--,n.你可以在这当中任意选择任意多个物品. ...

  7. Luogu 考前模拟Round. 1

    A.情书 题目:http://www.luogu.org/problem/show?pid=2264 赛中:sb题,直接暴力匹配就行了,注意一下读入和最后一句话的分句 赛后:卧槽 怎么只有40 B.小 ...

  8. luogu P2580 于是他错误的点名开始了

    luogu  P2580 于是他错误的点名开始了 https://www.luogu.org/problem/show?pid=2580 题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 他会一边 ...

  9. CJOJ 1331 【HNOI2011】数学作业 / Luogu 3216 【HNOI2011】数学作业 / HYSBZ 2326 数学作业(递推,矩阵)

    CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异 ...

随机推荐

  1. Mac 环境下配置 MySQL 以及 Mac终端登录MySQL

    1.首先mysql官网下载Mac 版 mysql直接安装 2.打开偏好设置-> MySQL -> 查看是否开启mysql服务 3.打开终端 进入mysql目录: /usr/local/my ...

  2. 实现element-ui对话框可拖拽功能

    element-ui对话框可拖拽及边界处理 应业务需求,需要实现对话框可拖拽问题,应element-ui没有提供官方支持,于是便参考大神的文章,得出了适合业务需要的解决方案.很多大神给出的代码是没有解 ...

  3. 前端er,你真的会用 async 吗?

    async 异步函数 不完全使用攻略 前言 现在已经到 8012 年的尾声了,前端各方面的技术发展也层出不穷,VueConf TO 2018 大会 也发布了 Vue 3.0的计划.而在我们(我)的日常 ...

  4. 3、JVM中的对象

    1.对象的创建 A  a = new A() A:引用的类型 a::引用的名称 new A():创建一个A类对象 当创建一个对象时,具体创建过程是什么呢? (1)JVM遇到new的字节码指令后,检查类 ...

  5. 021 01 Android 零基础入门 01 Java基础语法 03 Java运算符 01 赋值运算符

    021 01 Android 零基础入门 01 Java基础语法 03 Java运算符 01 赋值运算符 本文知识点:Java中的赋值运算符 赋值运算符 赋值运算符从右往左运算 赋值运算符左边不能是常 ...

  6. 基于ASP.NET Core 3.x的端点路由(Endpoint Routing)实现控制器(Controller)和操作(Action)分离的接口服务

    本文首发于 码友网 -- <基于ASP.NET Core 3.x的端点路由(Endpoint Routing)实现控制器(Controller)和操作(Action)分离的接口服务> 前言 ...

  7. 带有Firebase的离子2:在OAuth 2中签名

    介绍 这是一个指南,展示如何在Android上使用Firebase认证谷歌用户. 背景 虽然很多人都写过这个指南,但是他们没有解释一个关键的部分--为什么在执行了每一步之后仍然会看到认证错误12501 ...

  8. 萌新学python

    python python安装 进入官网http://www.python.org/download/ 下载 我下的是3.6.6大家可以根据需要下载(3.x和2.x不兼容请小心) 之后安装就可以了 p ...

  9. 多测师讲解自动化测试 _RFalert弹框._高级讲师肖sir

    alert弹框定位 Open Browser file:///D:\\bao\\baoan\\alert弹框.html gc sleep 2 Handle Alert accept #点击确定 Han ...

  10. Django 中实现连接多个数据库并实现读写分离

    读写分离 其基本原理就是让主数据库处理事务性增,改,删操作(INSERT,UPDATE,DELETE)操作,而从数据库处理SELECT查询操作,数据库复制被用来把事物性操作导致的变更同步到其他从数据库 ...