[递推]C. 【例题3】数的划分
C
.
【
例
题
3
】
数
的
划
分
C. 【例题3】数的划分
C.【例题3】数的划分
题目描述
将整数
n
n
n 分成
k
k
k 份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如:
n
=
7
n=7
n=7,
k
=
3
k=3
k=3,下面三种分法被认为是相同的:
1
,
1
,
5
;
1
,
5
,
1
;
1
,
1
,
5.
1,1,5;~~~~1,5,1;~~~~1,1,5.
1,1,5; 1,5,1; 1,1,5.
问有多少种不同的分法。
输入格式
两个整数,
n
n
n和
k
k
k 。
输出格式
输出不同的分法数。
样例
输入样例
7
3
7 ~~~3
7 3
输出样例
4
4
4
样例说明
四种分法为:
1
,
1
,
5
;
1
,
2
,
4
;
1
,
3
,
3
;
2
,
2
,
3.
1,1,5;~~~~ 1,2,4; ~~~~1,3,3;~~~~ 2,2,3.
1,1,5; 1,2,4; 1,3,3; 2,2,3.
题目解析
看题面,首先想到递推.
设
t
(
n
,
k
)
为
t(n,k)为
t(n,k)为整数
n
n
n分为
k
k
k份的不同分法的数量.
因为不能为空,那么最小就只能分到
1
1
1.
那么我们就可以得出:
t
(
n
,
k
)
=
1
(
n
=
=
k
)
t(n,k)=1~~~(n==k)~~~~~~~~~~~~
t(n,k)=1 (n==k) (因为每份最多都是
1
1
1)
t
(
n
,
k
)
=
0
(
n
<
k
)
t(n,k)=0~~~(n<k)~~~~~~~~~~~~~~~
t(n,k)=0 (n<k) (因为就算每份都只放
1
1
1也不够放,而且都不能为空)
然后我们考虑两种情况
- 有一份是装有
1
1
1的:那么就有
t
(
n
−
1
,
k
−
1
)
t(n-1,k-1)
t(n−1,k−1)种情况
- 没有一份是装有
1
1
1的:那么就有
t
(
n
−
k
,
k
)
t(n-k,k)
t(n−k,k)种情况
那么就能得出递推式:
t
(
n
,
k
)
=
{
t
(
n
,
k
)
=
1
(
n
=
=
k
)
t
(
n
,
k
)
=
0
(
n
<
k
)
t
(
n
,
k
)
=
t
(
n
−
1
,
k
−
1
)
+
t
(
n
−
k
,
k
)
t(n,k) = \left\{\begin{matrix} & t(n,k)=1~~~~~~~~~~~~~(n==k)\\ & t(n,k)=0~~~~~~~~~~~~~~~~(n<k)\\ & t(n,k)=t(n-1,k-1)+t(n-k,k)\\ \end{matrix}\right.
t(n,k)=⎩⎨⎧t(n,k)=1 (n==k)t(n,k)=0 (n<k)t(n,k)=t(n−1,k−1)+t(n−k,k)
Code
#include <bits/stdc++.h>
using namespace std;
int n, k, t[205][10];
int main ()
{
scanf ("%d%d", &n, &k);
memset (t, 0, sizeof (t));
for (int i = 1; i <= n; ++ i)
{
for (int j = 1; j <= k; ++ j)
{
if (i == j) t[i][j] = 1; //每个都分1
else if (i < j) t[i][j] = 0; //每个都分1也不够
else t[i][j] = t[i - 1][j - 1]/*至少有一个份为1的方案数*/ + t[i - j][j]/*当没有任何一份为1时的方案数*/;
}
}
printf ("%d", t[n][k]);
return 0;
}
[递推]C. 【例题3】数的划分的更多相关文章
- 【递推】【卡特兰数】CODEVS 3134 Circle
新GET了一种卡特兰数的应用…… 在一个圆上,有2*K个不同的结点,我们以这些点为端点,连K条线段,使得每个结点都恰好用一次.在满足这些线段将圆分成最少部分的前提下,请计算有多少种连线的方法. 不会证 ...
- LightOJ - 1038 Race to 1 Again 递推+期望
题目大意:给出一个数,要求你按一定的规则将这个数变成1 规则例如以下,如果该数为D,要求你在[1,D]之间选出D的因子.用D除上这个因子,然后继续按该规则运算.直到该数变成1 问变成1的期望步数是多少 ...
- 大概是:整数划分||DP||母函数||递推
整数划分问题 整数划分是一个经典的问题. Input 每组输入是两个整数n和k.(1 <= n <= 50, 1 <= k <= n) Output 对于每组输入,请输出六行. ...
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
- [递推]D. 【例题4】传球游戏
D . [ 例 题 4 ] 传 球 游 戏 D. [例题4]传球游戏 D.[例题4]传球游戏 题目解析 设 t ( i , j ) t(i,j) t(i,j)为过了 j j j轮,轮到 i i i手上 ...
- BZOJ-1002 轮状病毒 高精度加减+Kirchhoff矩阵数定理+递推
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3543 Solved: 1953 [Submit][Statu ...
- 【递推】BZOJ 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- CODE[VS]-数的计算-递推-天梯白银
题目描述 Description 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1.不作任何处理; 2.在 ...
- 洛谷 P1028 数的计算【递推】
P1028 数的计算 题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1.不作任何处理; 2.在它 ...
随机推荐
- switchable css dark theme in js & html custom element
switchable css dark theme in js & html custom element dark theme / dark mode https://codepen.io/ ...
- Docker & Node.js
Docker & Node.js https://nodejs.org/en/docs/guides/nodejs-docker-webapp/ https://docs.docker.com ...
- xcode upgrade & git bug
xcode upgrade & git bug ➜ op-static git checkout feature/select-seat-system Agreeing to the Xcod ...
- React Styleguidist
React Styleguidist https://www.thoughtworks.com/cn/radar/techniques/micro-frontends https://github.c ...
- SVG to GeoJSON
SVG to GeoJSON GEOJSON https://geojson.org/ http://geojson.io/ https://github.com/mapbox/geojson.io/ ...
- js bese64转化为blob使用FormData上传
原文 工作示例 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...
- mysql数据库表引入redis解决方案
缓存方案 缓存方案在我的另外一篇博客里有详细说明,地址:https://www.cnblogs.com/wingfirefly/p/14419728.html 数据结构: 方案1: 1.存储结构采用h ...
- C++算法代码——和为给定数
题目来自:http://218.5.5.242:9018/JudgeOnline/problem.php?cid=1376&pid=0 题目描述 给出若干个整数,询问其中是否有一对数的和等于给 ...
- 【OI向】快速傅里叶变换(Fast Fourier Transform)
[OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. (以下应用只针对OI) 一句话:求多项式 ...
- HTTP/1.1报文详解
本文为<三万长文50+趣图带你领悟web编程的内功心法>第三个章节. 3.HTTP/1.1报文详解 在RFC2616中心详细的描述了HTTP/1.1[1]的报文,感兴趣的朋友也可以前往阅读 ...