使用函数式API构建神经网络

函数式API相比于keras.Sequential()具有更加灵活多变的特点。

函数式API主要应用于多输入多输出的网络模型。

利用函数式API构建神经网络主要分为3步,1.构建输入层,2.构建中间层与输出层并连接神经层,3.生成神经网络模型。

1.构建输入层

输入层的构建较为简单,调用keras.Input()方法来构建输入层。

1 input = keras.Input(shape = (28, 28))

shape参数是输入数据的形状(这里输入的是一个28*28的二维数据)。

2.构建中间层与输出层并连接神经层

上一篇博客中有提到过,输出层与中间层的差别主要在于激活函数/分类器的选用上,其他部分大致相同,所以这里放在一起讲。

函数式API是把神经网络层作为函数相互调用以达到连接神经层变成神经网络的目的。

可以在构建神经层的时候直接连接,其结构与Sequential模型相似。

1 x = keras.layers.Flatten()(input) #调用函数式API
2 x = keras.layers.Dense(32, activation = "relu")(x)
3 x = keras.layers.Dropout(0.5)(x)
4 x = keras.layers.Dense(64, activation = "relu")(x)
5 output = keras.layers.Dense(10, activation = "softmax")(x)

或者是先构建神经层,再按照自己需要的顺序相连。

1 a = keras.layers.Flatten()(input)
2 b = keras.layers.Dense(32, activation = "relu")
3 b = b(a)
4 c = keras.layers.Dropout(0.5)
5 c = z(b)
6 d = keras.layers.Dense(64, activation = "relu")
7 d = d(c)
8 output = keras.layers.Dense(10, activation = "softmax")
9 output = output(d)

不难看出,使用函数式API相对繁琐,但是能看出它的灵活性远高于Sequential模型。

3.生成神经网络模型

使用keras.Model()方法生成网络模型

1 model = keras.Model(inputs = input, outputs = output)

参数分别是神经网络的输入和输出层。

最后使用.compile()方法和.fit()方法确定模型训练流程并训练即可。

Tensorflow学习笔记No.2的更多相关文章

  1. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  2. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  3. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  4. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  5. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. tensorflow学习笔记(4)-学习率

    tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...

  8. tensorflow学习笔记(3)前置数学知识

    tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个   b为4* ...

  9. tensorflow学习笔记(2)-反向传播

    tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...

  10. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

随机推荐

  1. java基础语法(一)

    一.注释: 行内注释 //这是行内注释 多行注释 /* *这是多行注释 */ 文档注释 /** *这是文档注释 */ 二.标识符 标识符也就是我们所说的关键字 三.数据类型 1.基本数据类型 ​ 数据 ...

  2. Vue官方文档Vue.extend、Vue.component、createElement、$attrs/$listeners、插槽的深入理解

    一.Vue.extend({}). 看官网文档介绍,Vue.extend({})返回一个Vue的子类,那么这个Vue子类是啥玩意儿呢?我直观感觉它就是创建出一个组件而已啊,那么它又和Vue.compo ...

  3. Poi Excel 设置列宽计算公式

    int width = 40;sheet.setColumnWidth(0,252*width+323); 作者:彼岸舞 时间:2020\07\27 内容关于:工作中用到的小技术 本文来源于网络,只做 ...

  4. C++11的decltype关键字

    C++11的decltype关键字 概述 decltype关键字和auto有异曲同工之处 有时我们希望从表达式的类型推断出要定义的变量类型,但是不想用该表达式的值初始化变量(如果要初始化就用auto了 ...

  5. Java实现文件夹下文件实时监控

    一.commons-io方法 1.使用Commons-io的monitor下的相关类可以处理对文件进行监控,它采用的是观察者模式来实现的 (1)可以监控文件夹的创建.删除和修改 (2)可以监控文件的创 ...

  6. MySQL互联网业务使用建议

    一.基础规范 表存储引擎必须使用InnoDB 表字符集默认使用utf8,必要时候使用utf8mb4 解读: (1)通用,无乱码风险,汉字3字节,英文1字节 (2)utf8mb4是utf8的超集,有存储 ...

  7. Python中自己不熟悉的知识点记录

    重点笔记: Python  它是动态语言 动态语言的定义:动态编程语言   是   高级程序设计语言   的一个类别,在计算机科学领域已被广泛应用.它是一类   在 运行时可以改变其结构的语言   : ...

  8. 来讲讲你对ThreadLocal的理解

    前言 面试的时候被问到ThreadLocal的相关知识,没有回答好(奶奶的,现在感觉问啥都能被问倒),所以我决定先解决这几次面试中都遇到的高频问题,把这几个硬骨头都能理解的透彻的说出来了,感觉最起码不 ...

  9. 虚拟PWN初探

    前言 之前看到星盟Q群里面的消息,Freedom师傅在B站直播关于虚拟pwn入门的公开课,然后就去听了一波,感觉受益匪浅.之前一直以为虚拟pwn是超级复杂的东西,今年打比赛也遇到了好几次,一直无从下手 ...

  10. 面试:为了进阿里,重新翻阅了Volatile与Synchronized

    该系列文章收录在公众号[Ccww技术博客],原创技术文章早于博客推出 在深入理解使用Volatile与Synchronized时,应该先理解明白Java内存模型 (Java Memory Model, ...