MySQL查询优化之 index 索引的分类和使用
索引的分类
- 主键索引 (PRIMARY KEY)
- 唯一的标识符, 主键不可重复, 只能有一列作为主键
- 唯一索引 (Unique KEY)
- 避免重复的列出现, 唯一索引可以重复, 多个列都可以标识为唯一索引
- 常规索引 (KEY/INDEX)
- 默认的, index 和 key 关键字可以设置常规索引
- 全文索引 (FullText)
- 快速定位数据, 在 MyISAM 引擎下才有
- 只能用于CHAR , VARCHAR , TEXT数据列类型, 适合大型数据集
基础语法
/*
# 方法一:创建表时
CREATE TABLE 表名 (
字段名1 数据类型 [完整性约束条件…],
字段名2 数据类型 [完整性约束条件…],
[UNIQUE | FULLTEXT | SPATIAL] INDEX | KEY
[索引名] (字段名[(长度)] [ASC |DESC])
);
*/
-- 方法二:CREATE在已存在的表上创建索引
-- CREATE [UNIQUE | FULLTEXT | SPATIAL] INDEX 索引名 ON 表名 (字段名[(长度)] [ASC |DESC]) ;
/*常规索引*/
CREATE INDEX id_app_user_name ON app_user(`name`);
-- 方法三:ALTER TABLE在已存在的表上创建索引
-- ALTER TABLE 表名 ADD [UNIQUE | FULLTEXT | SPATIAL] INDEX
-- 索引名 (字段名[(长度)] [ASC |DESC]) ;
/*增加全文索引*/
ALTER TABLE `school`.`student` ADD FULLTEXT INDEX `studentname`(`StudentName`);
-- 删除索引:DROP INDEX 索引名 ON 表名字;
DROP INDEX `id_app_user_name` ON app_user
-- 删除主键索引: ALTER TABLE 表名 DROP PRIMARY KEY;
#显示索引信息: SHOW INDEX FROM student;
/*EXPLAIN : 分析SQL语句执行性能*/
EXPLAIN SELECT * FROM student WHERE studentno='1000';
/*使用全文索引*/
-- 全文搜索通过 MATCH() 函数完成。
-- 搜索字符串作为 against() 的参数被给定。搜索以忽略字母大小写的方式执行。对于表中的每个记录行,MATCH() 返回一个相关性值。即,在搜索字符串与记录行在 MATCH() 列表中指定的列的文本之间的相似性尺度。
EXPLAIN SELECT *FROM student WHERE MATCH(studentname) AGAINST('love');
/*
开始之前,先说一下全文索引的版本、存储引擎、数据类型的支持情况
MySQL 5.6 以前的版本,只有 MyISAM 存储引擎支持全文索引;
MySQL 5.6 及以后的版本,MyISAM 和 InnoDB 存储引擎均支持全文索引;
只有字段的数据类型为 char、varchar、text 及其系列才可以建全文索引。
测试或使用全文索引时,要先看一下自己的 MySQL 版本、存储引擎和数据类型是否支持全文索引。
*/
测试索引
-- 建表
-- 默认时间 DEFAULT CURRENT_TIMESTAMP
CREATE TABLE `app_user` (
`id` BIGINT(20) UNSIGNED NOT NULL AUTO_INCREMENT,
`name` VARCHAR(50) DEFAULT '' COMMENT '用户昵称',
`email` VARCHAR(50) NOT NULL COMMENT '用户邮箱',
`phone` VARCHAR(20) DEFAULT '' COMMENT '手机号',
`gender` TINYINT(4) UNSIGNED DEFAULT '0' COMMENT '性别(0:男;1:女)',
`password` VARCHAR(100) NOT NULL COMMENT '密码',
`age` TINYINT(4) DEFAULT '0' COMMENT '年龄',
`create_time` DATETIME,
`update_time` TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8mb4 COMMENT='app用户表'
-- 创建 插入一百万条数据 的函数
DELIMITER $$ -- 写函数之前的默认操作
CREATE FUNCTION mock_data()
RETURNS INT
BEGIN
DECLARE num INT DEFAULT 1000000;
DECLARE i INT DEFAULT 0;
WHILE i < num DO
-- 插入数据
INSERT INTO `app_user`(`name`,`email`,`phone`,`gender`,`password`,`age`,`create_time`)
VALUES(
CONCAT('用户', i),
'896352417@qq.com',
CONCAT('18', FLOOR(RAND()*(999999999-100000000)+100000000)),
FLOOR(RAND()*2),
UUID(),
FLOOR(RAND()*100),
NOW()
);
SET i = i+1;
END WHILE;
RETURN i;
END;
-- 调用函数
SELECT mock_data();
SELECT * FROM app_user WHERE `name`='用户9999' -- 耗时 0.686 sec
SELECT * FROM app_user WHERE `name`='用户9999' -- 耗时 0.711 sec
EXPLAIN SELECT * FROM app_user WHERE `name`='用户9999' -- 查询了1000258行数据
-- 一般索引命名: id_表名_字段名
-- 创建索引: CREATE INDEX 索引名 ON 表(字段)
CREATE INDEX id_app_user_name ON app_user(`name`);
-- 测试发现快了许多
SELECT * FROM app_user WHERE `name`='用户9999' -- 耗时 0 sec
EXPLAIN SELECT * FROM app_user WHERE `name`='用户9999' -- 查询了一行数据
索引准则
- 索引不是越多越好
- 不要对经常变动的数据加索引
- 小数据量的表建议不要加索引
- 索引一般应加在查找条件的字段
索引的数据结构
-- 我们可以在创建上述索引的时候,为其指定索引类型,分两类
hash类型的索引:查询单条快,范围查询慢
btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它)
-- 不同的存储引擎支持的索引类型也不一样
InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;
MySQL查询优化之 index 索引的分类和使用的更多相关文章
- (2.8)Mysql之SQL基础——索引的分类与使用
(2.8)Mysql之SQL基础——索引的分类与使用 关键字:mysql索引,mysql增加索引,mysql修改索引,mysql删除索引 按逻辑分类: 1.主键索引(聚集索引)(也是唯一索引,不允许有 ...
- MySQL 查询优化之 Index Merge
MySQL 查询优化之 Index Merge Index Merge Intersection 访问算法 Index Merge Union 访问算法 Index Merge Sort-Union ...
- MySQL 查询优化之 Index Condition Pushdown
MySQL 查询优化之 Index Condition Pushdown Index Condition Pushdown限制条件 Index Condition Pushdown工作原理 ICP的开 ...
- MYSQL查询优化:使用索引
索引是提高查询速度的最重要的工具.当然还有其它的一些技术可供使用,但是一 般来说引起最大性能差异的都是索引的正确使用.在MySQL邮件列表中,人们经常询问那些让查询运行得更快的方法.在大多数情况下,我 ...
- mysql 查询优化 ~ explain与索引失效
一 explain 1 扫描行数根据的是表的统计元数据 2 索引的元数据具体指的就是show index from查到的索引的区分度,索引的区分度越高越好 3 表的元数据是定期收集,所以可能不 ...
- 浅析MySQL中的Index Condition Pushdown (ICP 索引条件下推)和Multi-Range Read(MRR 索引多范围查找)查询优化
本文出处:http://www.cnblogs.com/wy123/p/7374078.html(保留出处并非什么原创作品权利,本人拙作还远远达不到,仅仅是为了链接到原文,因为后续对可能存在的一些错误 ...
- Atitit Mysql查询优化器 存取类型 范围存取类型 索引存取类型 AND or的分析
Atitit Mysql查询优化器 存取类型 范围存取类型 索引存取类型 AND or的分析 Atitit Mysql查询优化器 存取类型 范围存取类型 索引存取类型 AND or的分析1 存 ...
- MySQL索引介绍+索引的存储类型+索引的优点和缺点+索引的分类+删除索引
什么是索引? 索引用于快速找出某个列中有一特定值的行,不使用索引,mysql必须从第1条记录开始读完整的表,直到找出相关的行.表越大,查询数据所花费的实际越多.如果表中查询的列有一个索引,mysql能 ...
- MySQL数据库篇之索引原理与慢查询优化之二
接上篇 7️⃣ 正确使用索引 一.索引未命中 并不是说我们创建了索引就一定会加快查询速度,若想利用索引达到预想的提高查询速度的效果, 我们在添加索引时,必须遵循以下问题: #1 范围问题,或者说条件 ...
随机推荐
- springboot中过滤器、拦截器、切片使用
直接贴代码:采用maven工程 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project ...
- 函数动态参数 *args **kwargs
def f1(*args,**kwargs): print(args,type(args)) print(kwargs,type(kwargs))li = [11,22,33]dic = {'k1': ...
- VirtualBox5.2.2 安装 CentOS 7
转自百度经验:https://jingyan.baidu.com/article/4dc4084868a1e4c8d946f133.html?tdsourcetag=s_pctim_aiomsg&am ...
- js实现元素范围内拖动
元素拖拽,网上一堆的实现,其中很多是原生js写的,都不够简洁,甚至运行后看不到效果. 于是乎,安静地想了下,拖动元素貌似就是一个滑动事件的监听处理,具体操作如下: 1.一个外层DIV,或者直接用根节点 ...
- DRF框架笔记
序列化器类的定义格式? 继承serializers.Serializer:字段 = serializers.字段类型(选项参数) 序列化器类的基本使用? 序列化器类(instance=None, da ...
- ES6中的Promise和Generator详解
目录 简介 Promise 什么是Promise Promise的特点 Promise的优点 Promise的缺点 Promise的用法 Promise的执行顺序 Promise.prototype. ...
- CMake将生成的可执行文件保存到其他目录
在运行一些程序的时候,我们一般会把数据文件放在其他位置.而当在修改程序时,需要不断的修改代码,编译,执行.每次编译之后,都得将可执行文件复制到数据文件的目录. 这一问题有两种解决方法,一是直接在数据目 ...
- SQL学习(三) 复杂查询
我们本节考察的数据库如下所示: 3.1 创建出满足下述三个条件的视图(视图名称为 ViewPractice5_1).使用 product(商品)表作为参照表,假设表中包含初始状态的 8 行数据. 条件 ...
- 第四章 Sentinel--服务容错
我们接着承接上篇继续讲下去 : 第三章 Nacos Discovery–服务治理,开始第四篇的学习 第四章 Sentinel–服务容错 4.1 高并发带来的问题 在微服务架构中,我们将业务拆分成一个个 ...
- Python进阶——什么是上下文管理器?
在 Python 开发中,我们经常会使用到 with 语法块,例如在读写文件时,保证文件描述符的正确关闭,避免资源泄露问题. 你有没有思考过, with 背后是如何实现的?我们常常听到的上下文管理器究 ...