hdu5627 Clarke and MST (并查集)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 311 Accepted Submission(s): 173
He learned some algorithms of minimum spanning tree. Then he had a good idea, he wanted to find the maximum spanning tree with bit operation AND.
A spanning tree is composed by n−1 edges.
Each two points of n points
can reach each other. The size of a spanning tree is generated by bit operation AND with values of n−1 edges.
Now he wants to figure out the maximum spanning tree.
the number of test cases.
For each test case, the first line contains two integers n,m(2≤n≤300000,1≤m≤300000),
denoting the number of points and the number of edge respectively.
Then m lines
followed, each line contains three integers x,y,w(1≤x,y≤n,0≤w≤109),
denoting an edge between x,y with
value w.
The number of test case with n,m>100000 will
not exceed 1.
4 5
1 2 5
1 3 3
1 4 2
2 3 1
3 4 7
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 300050
struct node{
int x,y,w;
}e[maxn];
int ok[maxn],pre[maxn],ran[maxn];
void makeset(int x){
pre[x]=x;
ran[x]=0;
}
int findset(int x){
int i,j=x,r=x;
while(r!=pre[r])r=pre[r];
while(j!=pre[j]){
i=pre[j];
pre[j]=r;
j=i;
}
return r;
}
int main()
{
int n,m,i,j,T,t;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++){
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);
}
for(i=1;i<=m;i++)ok[i]=1;
int sum=0;
for(t=30;t>=0;t--){
for(i=1;i<=n;i++){
makeset(i);
}
int ans=n;
for(i=1;i<=m;i++){
if(ok[i] && (e[i].w&(1<<t) ) ){
int x=findset(e[i].x);
int y=findset(e[i].y);
if(x==y)continue;
ans--;
if(ran[x]>ran[y]){
pre[y]=x;
}
else{
pre[x]=y;
if(ran[x]==ran[y])ran[y]++;
}
}
}
if(ans==1){
sum|=(1<<t);
for(i=1;i<=m;i++){
if(ok[i] && (e[i].w&(1<<t) )){
ok[i]=1;
}
else ok[i]=0;
}
}
}
printf("%d\n",sum);
}
return 0;
}
hdu5627 Clarke and MST (并查集)的更多相关文章
- Codeforces 891C Envy(MST + 并查集的撤销)
题目链接 Envy 题意 给出一个连通的无向图和若干询问.每个询问为一个边集.求是否存在某一棵原图的最小生成树包含了这个边集. 考虑$kruskal$的整个过程, 当前面$k$条边已经完成操作的时 ...
- 【转】并查集&MST题集
转自:http://blog.csdn.net/shahdza/article/details/7779230 [HDU]1213 How Many Tables 基础并查集★1272 小希的迷宫 基 ...
- 做运动(Dijkstra+并查集+MST)
上面的题解是这样,这道题我真的脑残,其实打代码的时候就意识到了许多,可以用Dfs+Dij+二分,这样还可以卡一卡 但是我打了spfa+spfa+二分,这个显然很慢,类似的题目我好像还做过一道的,就是在 ...
- [BZOJ2238]Mst 最小生成树+树链剖分/并查集
链接 题解 先构建出最小生成树,如果删的是非树边,直接输出答案 否则问题转化为,把该边删掉后剩下两个联通块,两个端点分别在两个块内的最小边权,LCT可以维护 不妨换一种思考方向:考虑一条非树边可以代替 ...
- 由最小生成树(MST)到并查集(UF)
背景 最小生成树(Minimum Spanning Tree)的算法中,克鲁斯卡尔算法(Kruskal's algorithm)是一种常用算法. 在克鲁斯卡尔算法中的一个关键问题是如何判断图中的两个点 ...
- 【春训团队赛第四场】补题 | MST上倍增 | LCA | DAG上最长路 | 思维 | 素数筛 | 找规律 | 计几 | 背包 | 并查集
春训团队赛第四场 ID A B C D E F G H I J K L M AC O O O O O O O O O 补题 ? ? O O 传送门 题目链接(CF Gym102021) 题解链接(pd ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集
最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
随机推荐
- Vue.nextTick()的使用
什么是Vue.nextTick()?? 定义:在下次 DOM 更新循环结束之后执行延迟回调.在修改数据之后立即使用这个方法,获取更新后的 DOM. 所以就衍生出了这个获取更新后的DOM的Vue方法.所 ...
- 【C++】《Effective C++》第八章
第八章 定制new和delete 对于程序开发来说,了解C++内存管理例程的行为是非常重要的.其中两个主角是分配例程和归还例程(operator new和operator delete),配角是new ...
- 【Flutter】布局类组件之对齐和相对定位
前言 如果只想简单的调整一个子元素在父元素中的位置的话,使用Align组件会更简单一些. 接口描述 const Align({ Key key, // 需要一个AlignmentGeometry类型的 ...
- rename命令和批量重命名
本文为转载文章,转发自 https://blog.csdn.net/GGxiaobai/article/details/53507454 早期版本的rename是C语言版本,如今新的Ubuntu中采用 ...
- oracle 存储过程和包的权限
GRANT CREATE ANY PROCEDURE TO MONKEY --創建,查看,替換的權限 GRANT EXECUTE ANY PROCEDURE TO MONKEY --執行和查看的權限 ...
- Sentry(v20.12.1) K8S 云原生架构探索,1分钟上手 JavaScript 性能监控
系列 Sentry-Go SDK 中文实践指南 一起来刷 Sentry For Go 官方文档之 Enriching Events Snuba:Sentry 新的搜索基础设施(基于 ClickHous ...
- TSP旅行商问题
求解的问题,burma.tsp里面的内容 1 16.47 96.10 2 16.47 94.44 3 20.09 92.54 4 22.39 93.37 5 25.23 97.24 6 22.00 9 ...
- 前端面试之HTTP
前端面试之HTTP的基本性质 1 HTTP代理 在浏览器和服务器之间,有许多计算机和其他设备转发了HTTP消息.简而言之,他们中间的部分就是代理! 代理的作用 缓存(可以是公开的也可以是私有的,像浏览 ...
- centos7服务器远程安装图形化页面
以下是我用云的centos 7.4的安装步骤,照着我的命令操作肯定OK的,其他的就不敢保证了... 1.首先安装X(X Window System),命令为:(注意有引号) yum groupinst ...
- 手写Netty之多路复用Select小案例
注意:本文只是将上文多路复用器Select.Poll.Epoll区别梳理中提出的概念与Netty中的步骤联系起来,方便后面回顾,代码中注释很多,对于大家来说如果不是怀有同样的目的,不一定有用. 单线程 ...