题解 洛谷 P3571 【[POI2014]SUP-Supercomputer】
由数据范围可得出,不可能一次一次去进行回答询问,只能离线处理,然后\(O(1)\)解决。
考虑\(DP\)解决,先给出\(DP\)方程:
\(f_i=max(j+ \lceil \frac{s_{j+1}}{i} \rceil)\) (\(f_i\)表示为当前一次操作最多访问\(i\)个未访问的点的最小操作次数,\(s_i\)表示表示深度\(\geqslant i\)的节点个数)
式子右边的含义为前\(j\)次操作访问完前\(j\)层节点,后面每次都访问\(i\)个节点,可以发现这样的操作是最优的。若从贪心的角度来看,每次操作一定是尽量访问更多的点,若此时有额外的点可供选择,优先访问有儿子的节点,为以后操作保证最优性提供保障。
先感性地证明这个式子的正确性,也就是这个地方为什么取\(max\)。
① 若我们无法做到前\(j\)次操作访问完前\(j\)层节点,假设存在\(k\),可以做到前\(k\)次操作访问完前\(k\)层节点。可以发现第\(k\)层在第\(j\)层上面,那么在\(k\)层到\(j\)层的节点,我们无法做到通过\(j-k\)次操作全部访问完,可以得出式子:
\(\lceil \frac{s_{k+1}-s_{j+1}}{i} \rceil>j-k\)
变形得:
\(k+\lceil \frac{s_{k+1}}{i} \rceil>j+\lceil \frac{s_{j+1}}{i} \rceil\)
发现合法状态\(k\)比不合法状态\(j\)操作次数要多,所以通过取\(max\)可以去除\(j\)这种不合法情况。
② 若我们无法做到前\(j\)次操作访问完前\(j\)层节点时后面每次都访问\(i\)个节点,假设存在\(k\),可以做到前\(k\)次操作访问完前\(k\)层节点时后面每次都访问\(i\)个节点。可以发现第\(k\)层在第\(j\)层下面,那么可以做到每次都访问\(i\)个节点的层数会变小,所以合法状态\(k\)会比不合法状态\(j\)操作次数多。
由这两种情况,我们就可以得出,为了保证状态合法,转移时应取\(max\)。
设合法状态\(j,k\),假设状态\(j\)比状态\(k\)更优。
即\(j+ \lceil \frac{s_{j+1}}{i} \rceil>k+ \lceil \frac{s_{k+1}}{i} \rceil\)
\(\lceil \frac{s_{j+1}-s_{k+1}}{i} \rceil>k-j\)
\(\frac{s_{j+1}-s_{k+1}}{j-k}<-i\)
发现我们可以用斜率优化来优化复杂度,这里\(x\)为\(j\),\(y\)为\(s_{j+1}\),斜率为\(-i\)。
其他的一些实现细节就看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 1000010
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,h,t;
ll deep_max,query_max;
ll f[maxn],s[maxn],q[maxn],query[maxn];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
double x(int i)
{
return i;
}
double y(int i)
{
return s[i+1];
}
double slope(int j,int k)
{
return (y(j)-y(k))/(x(j)-x(k));
}
void dfs(int x,ll dep)
{
s[dep]++;
deep_max=max(deep_max,dep);
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
dfs(y,dep+1);
}
}
int main()
{
read(n),read(m);
for(int i=1;i<=m;++i)
read(query[i]),query_max=max(query_max,query[i]);
for(int i=2;i<=n;++i)
{
int fath;
read(fath),add(fath,i);
}
dfs(1,1);
for(int i=deep_max;i;--i) s[i]+=s[i+1];
for(int i=1;i<=deep_max;++i)
{
while(h<t&&slope(q[t],i)>slope(q[t],q[t-1])) t--;
q[++t]=i;
}
for(int i=1;i<=query_max;++i)
{
while(h<t&&slope(q[h],q[h+1])>-i) h++;
int j=q[h];
f[i]=j+(s[j+1]+i-1)/i;
}
for(int i=1;i<=m;++i) printf("%lld ",f[query[i]]);
return 0;
}
题解 洛谷 P3571 【[POI2014]SUP-Supercomputer】的更多相关文章
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 题解-洛谷P5217 贫穷
洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...
- 题解 洛谷 P2010 【回文日期】
By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...
- 题解 洛谷P2158 【[SDOI2008]仪仗队】
本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...
随机推荐
- Java WebService学习笔记 - Axis(一)
WebService 简介 实际开发中,很多系统都是基于历史遗留系统进行开发,有时,这些系统基于不同的语言,如C,C++,C#,java,PHP等等.为了实现历史系统的再利用,或向外部程序暴露调用接口 ...
- JavaWeb网上图书商城完整项目--day02-19.修改密码功能流程分析
我们来看看修改密码的业务流程操作:
- 暑假集训Day2 互不侵犯(状压dp)
这又是个状压dp (大型自闭现场) 题目大意: 在N*N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. ...
- js基础练习题(4)
9.对象 阅读代码,回答问题 function User(name) { var name1 = name; this.name2 = name; function getName1() { retu ...
- oracle闪回,找回已提交修改的记录
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_24521431/article/details/84580166 例如删除ward_id为96 ...
- 初探numpy——广播和数组操作函数
numpy广播(Broadcast) 若数组a,b形状相同,即a.shape==b.shape,那么a+b,a*b的结果就是对应数位的运算 import numpy as np a=np.array( ...
- C#操作SharePoint文档库文档
using (Stream file = spFile.OpenBinaryStream()) { //其余代码 }
- css实现内容渐变隐藏效果,手机网页版知乎内容隐藏效果的实现
看到一个需求,如下图,知乎手机网页版的一个视觉效果,对内容很长的部分有一个渐变的隐藏的效果,个人觉得这个设计还是很好的,符合手机大小的应用场景,没有一下子显示完全,可以很快的滑倒页面底部,一定程度上减 ...
- POJ 3977 题解
题目 Given a list of N integers with absolute values no larger than \(10^{15}\), find a non empty subs ...
- Linux系统中虚拟设备文件的各种实用用法
大家好,我是良许. 大家知道,在 Linux 下,一切皆文件,对于设备文件也是如此.我们在工作的过程中,经常会看到 /dev/null 这个玩意,那它到底是什么呢? 专业地讲,/dev/null 是一 ...