Brackets(括号最大匹配问题(区间dp))
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6 代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<cmath> const int maxn=1e5+;
typedef long long ll;
using namespace std;
string str;
int dp[][];
int main()
{
while(cin>>str)
{
if(str=="end")
{
break;
}
else
{
int n=str.length();
for(int t=;t<n;t++)
{
dp[t][t]=;
}
for(int t=;t<n-;t++)
{
if((str[t]=='['&&str[t+]==']')||(str[t]=='('&&str[t+]==')'))
{
dp[t][t+]=;
}
else
{
dp[t][t+]=;
}
}
for(int r=;r<=n;r++)
{
for(int i=;i<n;i++)
{
int j=i+r-;
if(j>n)
break;
if((str[i]=='['&&str[j]==']')||(str[i]=='('&&str[j]==')'))
{
dp[i][j]=dp[i+][j-]+;
}
else
dp[i][j]=;
for(int k=i;k<j;k++)
{
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+][j]);
}
}
}
printf("%d\n",dp[][n-]);
}
} return ;
}
Brackets(括号最大匹配问题(区间dp))的更多相关文章
- POJ - 2955 Brackets括号匹配(区间dp)
Brackets We give the following inductive definition of a “regular brackets” sequence: the empty sequ ...
- 括号序列(区间dp)
括号序列(区间dp) 输入一个长度不超过100的,由"(",")","[",")"组成的序列,请添加尽量少的括号,得到一 ...
- poj2955:括号匹配,区间dp
题目大意: 给一个由,(,),[,]组成的字符串,其中(),[]可以匹配,求最大匹配数 题解:区间dp: dp[i][j]表示区间 [i,j]中的最大匹配数 初始状态 dp[i][i+1]=(i,i+ ...
- POJ 2955 Brackets --最大括号匹配,区间DP经典题
题意:给一段左右小.中括号串,求出这一串中最多有多少匹配的括号. 解法:此问题具有最优子结构,dp[i][j]表示i~j中最多匹配的括号,显然如果i,j是匹配的,那么dp[i][j] = dp[i+1 ...
- POJ 2955 括号匹配,区间DP
题意:给你一些括号,问匹配规则成立的括号的个数. 思路:这题lrj的黑书上有,不过他求的是添加最少的括号数,是的这些括号的匹配全部成立. 我想了下,其实这两个问题是一样的,我们可以先求出括号要匹配的最 ...
- A - Brackets POJ - 2955 (区间DP模板题)
题目链接:https://cn.vjudge.net/contest/276243#problem/A 题目大意:给你一个字符串,让你求出字符串的最长匹配子串. 具体思路:三个for循环暴力,对于一个 ...
- 区间dp总结
poj 1141 Brackets Sequence 基础的区间dp题,注意dp边缘的初始化,以及递归过程中的边界 poj 2955 Brackets 依旧注意初始化,水题 hdu 4745 Two ...
- 区间DP 基本题集
51 Nod 1021 石子归并 模板题,敲就完事了,注意一下这种状态转移方程有个四边形的优化(时间) #include <cstdio> #include <iostream> ...
- CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)
1.http://codeforces.com/problemset/problem/149/D 2.题目大意 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色, ...
- poj 2955 Brackets 括号匹配 区间dp
题意:最多有多少括号匹配 思路:区间dp,模板dp,区间合并. 对于a[j]来说: 刚開始的时候,转移方程为dp[i][j]=max(dp[i][j-1],dp[i][k-1]+dp[k][j-1]+ ...
随机推荐
- 实验05——java算术运算符减法
package cn.tedu.demo; import java.math.BigDecimal; /** * @author 赵瑞鑫 E-mail:1922250303@qq.com * @ver ...
- Python环境搭建、python项目以docker镜像方式部署到Linux
Python环境搭建.python项目以docker镜像方式部署到Linux 本文的项目是用Python写的,记录了生成docker镜像,然后整个项目在Linux跑起来的过程: 原文链接:https: ...
- 怎么将PPT文件上传到微信公众号上?
我们都知道创建一个微信公众号,在公众号中发布一些文章是非常简单的,但公众号添加附件下载的功能却被限制,如今可以使用小程序“微附件”进行在公众号中添加附件. 以下是公众号添加附件使用“微附件”小程序的教 ...
- 教你几招,快速创建 MySQL 五百万级数据,愉快的学习各种优化技巧
我是风筝,公众号「古时的风筝」,一个兼具深度与广度的程序员鼓励师,一个本打算写诗却写起了代码的田园码农! 文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在 ...
- java_数组的定义与操作
数组定义和访问 数组概念 数组概念: 数组就是存储多个数据的容器,数组的长度固定,多个数据的数据类型要一致. 数组的定义 方式一 数组存储的数据类型[] 数组名字 = new 数组存储的数据类型[长度 ...
- python中1 is True 的结果为False,is判断与==判断的区别
python中1 is True 的结果为False,而1 == True的结果为True. python中True的数值就是1,那为什么1 is True 的结果为False呢? 因为is判断和== ...
- C++socket编程write()、read()简介及与send()、recv()的区别
1. write 函数原型:ssize_t write(int fd, const void*buf,size_t nbytes)write函数将buf中的nbytes字节内容写入文件描述符fd.成功 ...
- MongoDB学习4:MongoDB复制集机制和原理,搭建复制集
1.复制集的作用 1.1 MongoDB复制集的主要意义在于实现服务高可用 1.2 它的实现依赖于两个方面的功能: · 数据写入时将数据迅速复制到另一个独立节点上 · 在接收写入的 ...
- Java学习之反射篇
Java学习之反射篇 0x00 前言 今天简单来记录一下,反射与注解的一些东西,反射这个机制对于后面的java反序列化漏洞研究和代码审计也是比较重要. 0x01 反射机制概述 Java反射是Java非 ...
- mycat数据库集群系列之数据库多实例安装
mycat数据库集群系列之数据库多实例安装 最近在梳理数据库集群的相关操作,现在花点时间整理一下关于mysql数据库集群的操作总结,恰好你又在看这一块,供一份参考.本次系列终结大概包括以下内容:多数据 ...