CF1203D2 Remove the Substring (hard version) 题解
这题初赛让我白给了6分,于是我决定回来解决一下它。
说实话,看原题题面和看CCF代码真是两种完全不同的感受……
------------
思路分析:
把$s$串删去一部分之后,会把$s$串分成两部分,当然其中一部分有可能为空。$t$串作为$s$串的字串,在删去一部分之后也会被分为两部分。因此我们可以枚举$t$串被分开的位置,然后进行计算。
设$t$串在$t[p]$和$t[p+1]$之间被分开,$s$串在$s[i]$和$s[i+1]$之间被分开。因为要使答案最大,因此我们要让$s$串的左半部分包含且仅包含一个$t$串的左半部分,右半部分也是一样。
因此,按照CCF的讲法,设$s$串和$t$串的长度分别为$slen$和$tlen$,我们可以设$head[i]=p$表示$s[0...i]$包含且仅包含一个子串为$t[0...p]$,设$back[i]=p$表示$s[i...slen-1]$包含且仅包含一个字串为$t[p...tlen-1]$。
如何递推$head$和$back$数组?很显然了,用两个指针分别指向$s$串和$t$串,表示当前位置,相同即匹配成功。
因为指针初值需要设置为0,因此以下代码将$s$串和$t$串都整体后移了一位。
p=;
for(int i=;i<s.size();i++)
{
head[i]=head[i-];
if(s[i]==t[p])
head[i]=p++;
}
p=t.size()-;back[s.size()]=t.size();
for(int i=s.size()-;i;i--)
{
back[i]=back[i+];
if(s[i]==t[p])
back[i]=p--;
}
递推出$head$和$back$数组后,枚举断点计算答案就行了。用两个指针$i,j$分别指向删除的部分两端。为了让答案最大,应该找到满足$head[i]=p$的最小的$i$,以及满足$back[j]=p+1$的最大的$j$,这两个步骤用两个while循环就可以轻松搞定了。有一个需要注意的点,当被分开的两部分其中一部分包含整个$t$串时,另一部分取空串是最优的,这个需要特判一下。答案即为$j-i-1$。计算答案时也要特判不合法的情况。各个指针的初值也需要注意。
#include<iostream>
#include<cstdio>
#include<string>
using namespace std;
const int N=1e6;
int p=,ans;
int head[N],back[N];
string s,t;
int main()
{
cin>>s>>t;s='.'+s,t='.'+t;//后移一位
for(int i=;i<s.size();i++)
{
head[i]=head[i-];
if(s[i]==t[p])
head[i]=p++;
}
p=t.size()-;back[s.size()]=t.size();
for(int i=s.size()-;i;i--)
{
back[i]=back[i+];
if(s[i]==t[p])
back[i]=p--;
}
p=;
for(int i=,j=;i<s.size(),j<s.size(),p<t.size();p++)
{
while(head[i]<p && i<s.size())
i++;
while(back[j+]<=p+ && j<s.size())
j++;//找到最优的i和j
if(p==t.size()-)
j=s.size();//贪心地让另一部分为空串
if(i<s.size() && j<=s.size())//合法才更新答案
ans=max(ans,j-i-);
}
printf("%d",ans);
return ;
}
因为指针$i,j$一定是递增的,因此时间复杂度$O(n)$。
------------
既然是初赛原题,那么再来看看CCF的代码:(实测比我的代码快15ms...不过我的代码有的地方常数的确比较大)
#include<iostream>
#include<string>
using namespace std;
const int maxl=1e6;//改了一下数组大小,可以过困难版
string s,t;
int pre[maxl],suf[maxl];//分别相当于head和back数组 int main(){
cin>>s>>t;
int slen=s.length(),tlen=t.length();
for(int i=,j=;i<slen;++i){
if(j<tlen && s[i]==t[j]) ++j;
pre[i]=j;
}
for(int i=slen-,j=tlen-;i>=;--i){
if(j>= && s[i]==t[j]) --j;
suf[i]=j;
}
suf[slen]=tlen-;//递推基本相同,表示略有区别
int ans=;
for(int i=,j=,tmp=;i<=slen;++i){
while(j<=slen && tmp>=suf[j]+) ++j;
ans=max(ans,j-i-);
tmp=pre[i];
}
cout<<ans<<endl;
return ;
}
可以发现思路实际上大体相同,但是计算答案时略有差别。
分析一下这个计算答案的过程,枚举$s$的断点。可以发现,对于当前的循环,$tmp=pre[i-1]$,即$t[0...tmp-1]$是$s[0...i-1]$的字串,那么接下来为了使答案最大,应该找到满足$t[tmp...tlen-1]$是$s[j...slen-1]$的$j$。而这份代码中的while循环找到的$j$应该会比我们要找的$j$大1,因此要删除的部分就是$s[i...j-2]$,长度$j-i-1$。
然后分析一下题目:(理解了题意之后感觉想错都难qwq)
1.
Q:程序输出时,suf数组满足:对于任意$0\leq i\leq slen$,$suf[i]\leq suf[i+1]$。
A:T,显然$suf$数组是递增的。
2.
Q:当$t$是$s$的子序列时,输出一定不为0。
A:F,反例样例3。
3.
Q:程序运行到第23行时,“j-i-1”一定不小于0。
A:F,在本题中的确不会出现这种情况,但初赛题目中可没保证$t$是$s$的子串,$t$不是$s$的字串时就会出现这种情况。
4.
Q:当$t$是$s$的子序列时,$pre$数组和$suf$数组满足:对于任意$0\leq i<slen$,$pre[i]>suf[i+1]+1$。
A:F,反例样例1。
5.
Q:若$tlen=10$,输出为0,则$slen$最小为( )。
A:输出为0说明$t$不是$s$的子序列或者$s=t$,显然前者可以使答案更小,即$t$越短越好。由于cin不能输入空串,因此最短只能是1。
6.
Q:若$tlen=10$,输出为2,则$slen$最小为( )。
A:$s$最多删去两个字符使$t$仍是$s$的字串,显然$t$串最短长度为12。
最后祝大家CSP-J/S 2019rp++。
CF1203D2 Remove the Substring (hard version) 题解的更多相关文章
- D2. Remove the Substring (hard version)(思维 )
D2. Remove the Substring (hard version) time limit per test 2 seconds memory limit per test 256 mega ...
- CF #579 (Div. 3) D1.Remove the Substring (easy version)
D1.Remove the Substring (easy version) time limit per test2 seconds memory limit per test256 megabyt ...
- D2. Remove the Substring (hard version)
D2. Remove the Substring (hard version) 给字符串s,t,保证t为s的子序列,求s删掉最长多长的子串,满足t仍为s的子序列 记录t中每个字母在s中出现的最右的位置 ...
- Codeforces 1196D2 RGB Substring (Hard version) 题解
题面 \(q\) 个询问,每个询问给出一个字符串 \(s\),要你在 \(s\) 中用最小替换得到无穷字符串 RGBRGBRGB... 的长度为定值 \(k\) 的子串. 题解 一眼看过去可能是编辑距 ...
- Codeforces Round #579 (Div. 3) D2. Remove the Substring (hard version) (思维,贪心)
题意:给你一个模式串\(t\),现在要在主串\(s\)中删除多个子串,使得得到的\(s\)的子序列依然包含\(t\),问能删除的最长子串长度. 题解:首先,我们不难想到,我们可以选择\(s\)头部到最 ...
- 双指针(最大删除子串)Codeforces Round #579 (Div. 3)--Remove the Substring (hard version)
题目链接:https://codeforces.com/contest/1203/problem/D2 题意: 给你S串.T串,问你最长删除多长的子串使得S串里仍然有T的子序列. 思路: 想了好久,先 ...
- Codeforces - 1203D2 - Remove the Substring (hard version) - 双指针
https://codeforces.com/contest/1203/problem/D2 上次学了双指针求两个字符串之间的是否t是s的子序列.但其实这个双指针可以求出的是s的前i个位置中匹配t的最 ...
- Remove the Substring
D2. Remove the Substring (hard version) 思路:其实就是贪心吧,先从前往后找,找到 t 可在 s 中存在的最小位置 (pre),再从后往前找,找到 t 可在 s ...
- Codeforces Round #575 (Div. 3) D2. RGB Substring (hard version) 【递推】
一.题目 D2. RGB Substring (hard version) 二.分析 思路一开始就想的对的,但是,用memset给数组初始化为0超时了!超时了! 然后我按照题解改了个vector初始化 ...
随机推荐
- PHP 是什么?简介下
PHP 是服务器端脚本语言. 您应当具备的基础知识 在继续学习之前,您需要对以下知识有基本的了解: HTML CSS PHP 是什么? PHP(全称:PHP:Hypertext Preprocesso ...
- PHP strval() 函数
strval() 函数用于获取变量的字符串值.高佣联盟 www.cgewang.com PHP 版本要求: PHP 4, PHP 5, PHP 7 语法 string strval ( mixed $ ...
- PHP acos() 函数
实例 返回不同数的反余弦: <?phpecho(acos(0.64) . "<br>");echo(acos(-0.4) . "<br>&q ...
- 星屑幻想 optimal mark
LINK :SP839 星屑幻想 取自 OJ 的名称 小事情...题目大意还是要说的这道题比较有意思,想了一段时间. 给你一张图 这张图给答案带来的贡献是每条边上两个点值得异或 一些点的值已经被确定 ...
- SpringCloud系列之客户端负载均衡Netflix Ribbon
1. 什么是负载均衡? 负载均衡是一种基础的网络服务,它的核心原理是按照指定的负载均衡算法,将请求分配到后端服务集群上,从而为系统提供并行处理和高可用的能力.提到负载均衡,你可能想到nginx.对于负 ...
- python8.2线程锁
import threading lock=threading.Lock()#创建线程锁:互斥锁num=100def run(name): lock.acquire()#设置锁 global num# ...
- 17、Java 三大特性之 多态
知识点:多态的概念.java中多态的使用(方法重载和重写.子类对象的多态性) .多态使用的好处 1.什么是多态? 所谓多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程 ...
- java Iterator迭代器
一 Iterator迭代器概述 java中提供了很多个集合,它们在存储元素时,采用的存储方式不同.我们要取出这些集合 中的元素,可通过一种通用的获取方式来完成. Collection集合元素的通用获取 ...
- stat 命令家族(2)- 详解 pidstat
性能测试必备的 Linux 命令系列,可以看下面链接的文章哦 https://www.cnblogs.com/poloyy/category/1819490.html 介绍 对 Linux 任务的统计 ...
- Java的注解浅析
人的一生就像一篇文章,只有经过多次精心修改,才能不断完善 Java注解概念理解: Java注解又称为Java标注,是JDK5引入的一中注释机制,Java中大家熟悉的五种注解分别是:@Override, ...