Java并发编程 - Runnbale、Future、Callable 你不知道的那点事(二)
Java并发编程 - Runnbale、Future、Callable 你不知道的那点事(一)大致说明了一下 Runnable、Future、Callable 接口之间的关系,也说明了一些内部常用的方法的含义,那具体内部怎么实现的呢?JDK内部底层源码怎么解读?我就带领大家一一探个究竟。
一、ExecutorService 中常用的 submit() 底层源码详解
(1)ExecutorService 中常用的 submit() 方法展示:
<T> Future<T> submit(Callable<T> task);
Future<?> submit(Runnable task);
暂时只需要知道线程池中的线程是依赖于 ExecutorService 接口进行调用的,实现类是 ThreadPoolExecutor,重写了 Executor 接口的 execute() 方法,然后进行调用;
后面我会专门讲解一下 Executor、ExecutorService、AbstractExecutorService、ThreadPoolExecutor、Executors 之间的关系,让你详细了解线程池的原理和概念。
(2)ExecutorService 中的 submit(Runnable task) 方法详解
首先通过 Executors 工具类方法创建线程池(单线程线程池、固定数量线程池、缓存线程池),然后调用 submit() 方法,传入的参数切记是 Runnable 接口的实现类,肯定是重写了 run() 方法;
明白上面这句话的原理,看一下 AbstractExecutorService 抽象类中的 submit(Runnable task) 方法详解:一步一步调用
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
FutureTask 构造方法,设置参数 callable,state 参数:
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result); // 调用线程工具类 Executors 中的 callable() 方法
this.state = NEW;
}
Executors 工具类中的 callable() 方法
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
1)先判断 task 不能为空,然后调用 newTaskFor(task, null) 方法,然后一个 RunabbleFuture 接口的实现类实例对象: FuntureTask 实例对象【切记:这个类肯定重写了 run() 方法】;
2)注意:创建 FutureTask 对象实例时,调用工具类 Executors 创建一个 RunnableAdapter 对象(可以理解为:Runnable 和Callable 之间的适配器),RunnableAdapter 内部类继承了 Callable 接口,重写了 call() 方法,在 call() 方法中调用真正任务要执行的 run() 方法逻辑;
3)然后调用 execute(ftask) 方法,这个方法是线程池实现顶层接口 Executor,重写了 execute() 方法,去执行任务逻辑方法;
ExecutorPoolThread 类中的 execute() 方法:
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false); // 添加到工作线程中
}
else if (!addWorker(command, false))
reject(command);
}
线程池 ExecutorService 直接调用 execute() 方法执行线程任务,则会创建新的 Worker 对象(Worker 类中有一个 Thread 成员变量),Worker 对象可以理解为一个工作线程,是用HashSet() 集合存储,之后该线程调用 start() 方法线程开始执行任务;
注意:创建 FutureTask 对象实例时,调用工具类 Executors 创建一个 RunnableAdapter 对象(可以理解为:Runnable 和Callable 之间的适配器),RunnableAdapter 内部类继承了 Callable 接口,重写了 call() 方法,在 call() 方法中调用真正任务要执行的 run() 方法逻辑;
本质:调用FutureTask类的run( )方法,在其run( )方法中调用了RunnableAdapter类的call( )方法,在call( )方法中调用了Runnable实现类的run( ) 方法!
(3)ExecutorService 中的 submit(Callable task) 方法详解
实现 Callable 接口的任务,在线程池底层原理调用上是比较简单的,没有 submit(Runnable task) 这么复杂;
AbstractExecutorService 抽象类中的 submit(Callable task) 方法详解:
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
FutureTask 类中设置 callable、state 参数
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
}
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
}
线程池 ExecutorService 直接调用 execute() 方法执行线程任务,则会创建新的 Worker 对象(Worker 类中有一个 Thread 成员变量),Worker 对象可以理解为一个工作线程,是用HashSet() 集合存储,之后该线程调用 start() 方法线程开始执行任务;
本质:在调用 ExecutorPoolThread 中的 run() 方法执行任务时,在里面是调用了真正创建的 FutureTask 实例的 run() 方法,在这里面才真正调用了实现 Callable 接口的 call() 方法,call() 方法中的代码就是真正要执行任务的逻辑代码;
二、实践
讲了这么多原理实在是太枯燥乏味,一时半会也理解不了,咱就结合实践再加深一下印象!
1)使用 Callable + Future + ExecutorPoolThread 获取执行结果
public class Test1 {
public static void main(String[] args) {
ExecutorService executor = Executors.newCachedThreadPool();
Task task = new Task();
Future<Integer> result = executor.submit(task);
executor.shutdown();
try {
Thread.sleep(1000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
System.out.println("主线程执行......");
try {
System.out.println("task运行结果" + result.get());
} catch (Exception e) {
e.printStackTrace();
}
System.out.println("执行完毕");
}
}
class Task implements Callable<Integer> {
@Override
public Integer call() throws Exception {
System.out.println("子线程执行......");
Thread.sleep(3000);
int sum = 0;
for (int i = 0; i < 100; i++)
sum += i;
return sum;
}
}
结果:
子线程执行......
主线程执行......
task运行结果4950
执行完毕
2)Runnable + ExecutorPoolThread 获取不到结果
public class Test2 {
public static void main(String[] args) {
ExecutorService executor = Executors.newCachedThreadPool();
Task2 task = new Task2();
Future result = executor.submit(task);
executor.shutdown();
try {
Thread.sleep(1000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
System.out.println("主线程执行......");
try {
System.out.println("task运行结果" + result.get());
} catch (Exception e) {
e.printStackTrace();
}
System.out.println("执行完毕");
}
}
class Task2 implements Runnable {
@Override
public void run() {
try {
System.out.println("子线程执行......");
Thread.sleep(3000);
Integer sum = 0;
for (int i = 0; i < 100; i++) {
sum += i;
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
结果:
子线程执行......
主线程执行......
task运行结果null
执行完毕
task运行结果是 null,由于不是 Callable 接口的实现类,没有通用性,就使用了 RunnableAdapter 适配器来保证通用性,所以在 RunnableAdapter 实现了 Callable 接口中重写了 call() 方法,由于传入的 result 是 null,所以返回的 result 也就是 null 了。
三、总结
说了这么多Runnable、Future、Callable 底层调用的实现原理,本质都会创建一个 FutureTask 对象,然后调用 run() 方法,最后再调用 call() 方法实现任务逻辑【若是 Runnable 接口的实例对象,会使用 RunnableAdapter 适配器来转接调用一下,然后在调用 call() 方法,在此 call() 方法里面在调用 run() 方法执行;若是 Callable 接口的实例,直接调用 call() 方法执行】
菜鸟的简单整理,大家仔细阅读,有问题请留言一起讨论讨论!
Java并发编程 - Runnbale、Future、Callable 你不知道的那点事(二)的更多相关文章
- Java并发编程 - Runnbale、Future、Callable 你不知道的那点事(一)
从事Java开发已经快两年了,都说Java并发编程比较难,比较重要,关键面试必问,但是在我的日常开发过程中,还真的没有过多的用到过并发编程:这不疫情嘛,周末不能瞎逛,就看看师傅们常说的 Runnabl ...
- Java并发编程:ThreadPoolExecutor + Callable + Future(FutureTask) 探知线程的执行状况
如题 (总结要点) 使用ThreadPoolExecutor来创建线程,使用Callable + Future 来执行并探知线程执行情况: V get (long timeout, TimeUnit ...
- Java 并发编程:volatile的使用及其原理(二)
一.volatile的作用 在<Java并发编程:核心理论>一文中,我们已经提到过可见性.有序性及原子性问题,通常情况下我们可以通过Synchronized关键字来解决这些个问题,不过如果 ...
- java并发编程-Executor框架 + Callable + Future
from: https://www.cnblogs.com/shipengzhi/articles/2067154.html import java.util.concurrent.*; public ...
- Java并发编程:Callable、Future和FutureTask
作者:海子 出处:http://www.cnblogs.com/dolphin0520/ 本博客中未标明转载的文章归作者海子和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置 ...
- java并发编程--Runnable Callable及Future
1.Runnable Runnable是个接口,使用很简单: 1. 实现该接口并重写run方法 2. 利用该类的对象创建线程 3. 线程启动时就会自动调用该对象的run方法 通常在开发中结合Execu ...
- (转)Java并发编程:Callable、Future和FutureTask
Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一 ...
- Java 并发编程:Callable和Future
项目中经常有些任务需要异步(提交到线程池中)去执行,而主线程往往需要知道异步执行产生的结果,这时我们要怎么做呢?用runnable是无法实现的,我们需要用callable实现. import java ...
- Java并发编程:Callable、Future和FutureTask(转)
Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一 ...
随机推荐
- 反射(Reflection)
Java学习笔记--反射(Reflection) 关于反射 能够分析类能力的程序称之为反射(Reflection) 反射机制可以用来: 在运行时分析类的能力 在运行时检查对象,例如:编写一个适合所有类 ...
- Linux操作系统的介绍和安装教程(Centos6.4)
路漫漫其修远兮,吾将上下而求 Linux的简单介绍 Linux最初是由芬兰赫尔辛基大学学生Linus Torvalds开发的,由于自己不满意教学中使用的MINIX操作系统, 所以在1990年底由于个人 ...
- Git版本管理器操作步骤
组长建立管理器: 第一步: 管理器网址:https://gitee.com/ 第二步:注册个人信息 第三步(添加项目) 第四步(兴建文件)注意:必须双层文件夹 第五步:打开VS开发工具 第六步:去把刚 ...
- Linux入门到放弃之六《磁盘和文件系统管理二》
上一篇博客写到了如何创建卷组和创建逻辑卷,但是有一个问题,需要更大逻辑卷空间怎么办呢? 要求:使用lvextend命令为逻辑卷 mail扩充容量,从卷组 mail_store 上再 划出5GB给逻辑卷 ...
- web应用部署(Tomcat,springboot部署方式)
转载自:https://www.cnblogs.com/haimishasha/p/10791454.html 核心内容 1.在Tomcat中有四种部署Web应用的方式,分别是: (1)利用Tomca ...
- vue-cli2.0创建项目步骤
Vue是近两年来比较火的一个前端框架(渐进式框架吧),与reactjs和angularjs三国鼎立,我不是职业前端,做过Vue,了解了一下React,听说过Angluar.我只能这么说,我来晚了,没经 ...
- css-2d,3d,过渡,动画
css2d CSS3 转换可以对元素进行移动.缩放.转动.拉长或拉伸. 2D变换方法: translate()方法,根据左(X轴)和顶部(Y轴)位置给定的参数,从当前元素位置移动 transform: ...
- 4G工业路由器的性能介绍和应用需求
4G工业路由器可以实现数据的远程传输和设备控制功能,主要应用的场景包括智能电网.智能交通.智能家居.才智金融.工业自动化.公共安全.环境保护.数字化医疗等领域,特别是大数据或是视频传输等.那么4G工业 ...
- ant-design-vue中tree增删改
ant-design-vue中tree增删改 1. 使用背景 新项目中使用了ant-design-vue组件库.该组件库完全根基数据双向绑定的模式实现.只有表单组件提供少量的方法.所以,在使用ant- ...
- Exception in MIPS
介绍 分支.跳转.异常(包括硬件中断)是三种改变控制流的事件. 同步异常是指程序执行到固定位置必定触发且每次现象一致的异常,如算术溢出异常.未定义指令异常.缺页异常等. 异步异常与当前执行程序无关,如 ...