MapReduce的工作流程

  1.客户端将每个block块切片(逻辑切分),每个切片都对应一个map任务,默认一个block块对应一个切片和一个map任务,split包含的信息:分片的元数据信息,包含起始位置,长度,和所在节点列表等

  2.map按行读取切片数据,组成键值对,key为当前行在源文件中的字节偏移量,value为读到的字符串

  3.map函数对键值对进行计算,输出<key,value,partition(分区号)>格式数据,partition指定该键值对由哪个reducer进行处理。通过分区器,key的hashcode对reducer个数取模。
  4.map将kvp写入环形缓冲区内,环形缓冲区默认为100MB,阈值为80%,当环形缓冲区达到80%时,就向磁盘溢写小文件,该小文件先按照分区号排序,区号相同的再按照key进行排序,归并排序。溢写的小文件如果达到三个,则进行归并,归并为大文件,大文件也按照分区和key进行排序,目的是降低中间结果数据量(网络传输),提升运行效率
  5.如果map任务处理完毕,则reducer发送http get请求到map主机上下载数据,该过程被称为洗牌shuffle
  6.可以设置combinclass(需要算法满足结合律),先在map端对数据进行一个压缩,再进行传输,map任务结束,reduce任务开始
  7.reduce会对洗牌获取的数据进行归并,如果有时间,会将归并好的数据落入磁盘(其他数据还在洗牌状态)
  8.每个分区对应一个reduce,每个reduce按照key进行分组,每个分组调用一次reduce方法,该方法迭代计算,将结果写到hdfs输出

洗牌阶段

  1.copy:一个reduce任务需要多个map任务的输出,每个map任务完成时间很可能不同,当只要有一个map任务完成,reduce任务立即开始复制,复制线程数配置mapred-site.xml参数“mapreduce.reduce.shuffle.parallelcopies",默认为5.

  2.copy缓冲区:如果map输出相当小,则数据先被复制到reduce所在节点的内存缓冲区大小配置mapred-site.xml参数“mapreduce.reduce.shuffle.input.buffer.percent”,默认0.70),当内存缓冲区大小达到阀值(mapred-site.xml参数“mapreduce.reduce.shuffle.merge.percent”,默认0.66)或内存缓冲区文件数达到阀值(mapred-site.xml参数“mapreduce.reduce.merge.inmem.threshold”,默认1000)时,则合并后溢写磁盘。
  3.sort:复制完成所有map输出后,合并map输出文件并归并排序
  4.sort的合并:将map输出文件合并,直至≤合并因子(mapred-site.xml参数“mapreduce.task.io.sort.factor”,默认10)。例如,有50个map输出文件,进行5次合并,每次将10各文件合并成一个文件,最后5个文件。

K,V使用自定义数据类型

  框架会对键,值序列化,因此键类型和值类型需要实现writable接口

  框架会对键进行排序,因此必须实现writableComparable接口  

MapReduce的工作流程的更多相关文章

  1. MapReduce简述、工作流程及新旧API对照

    什么是MapReduce? 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查而且数出有多少张是黑桃. MapReduce方法则是: 1. 给在座的全部玩家中分配这摞牌. 2. 让每一个玩家数自己手 ...

  2. MapReduce与Yarn 的详细工作流程分析

    MapReduce详细工作流程之Map阶段 如上图所示 首先有一个200M的待处理文件 切片:在客户端提交之前,根据参数配置,进行任务规划,将文件按128M每块进行切片 提交:提交可以提交到本地工作环 ...

  3. MapReduce工作流程及Shuffle原理概述

    引言: 虽然MapReduce计算框架简化了分布式程序设计,将所有的并行程序均需要关注的设计细节抽象成公共模块并交由系统实现,用户只需关注自己的应用程序的逻辑实现,提高了开发效率,但是开发如果对Map ...

  4. Hadoop随笔(一):工作流程的源码

    一.几个可能会用到的属性值 1.mapred.map.tasks.speculative.execution和mapred.reduce.tasks.speculative.execution 这两个 ...

  5. Hadoop 4、Hadoop MapReduce的工作原理

    一.MapReduce的概念 MapReduce是hadoop的核心组件之一,hadoop要分布式包括两部分,一是分布式文件系统hdfs,一部是分布式计算框就是mapreduce,两者缺一不可,也就是 ...

  6. yarn工作流程

    YARN 是 Hadoop 2.0 中的资源管理系统, 它的基本设计思想是将 MRv1 中的 JobTracker拆分成了两个独立的服务 : 一个全局的资源管理器 ResourceManager 和每 ...

  7. MapReduce的工作原理

    MapReduce简介 MapReduce是一种并行可扩展计算模型,并且有较好的容错性,主要解决海量离线数据的批处理.实现下面目标 ★ 易于编程 ★ 良好的扩展性 ★ 高容错性   MapReduce ...

  8. kafka工作流程| 命令行操作

    1.  概述 数据层:结构化数据+非结构化数据+日志信息(大部分为结构化) 传输层:flume(采集日志--->存储性框架(如HDFS.kafka.Hive.Hbase))+sqoop(关系型数 ...

  9. Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(二)

    本文继<Yarn源码分析之MRAppMaster上MapReduce作业处理总流程(一)>,接着讲述MapReduce作业在MRAppMaster上处理总流程,继上篇讲到作业初始化之后的作 ...

随机推荐

  1. linux centos8 安装dokcker并启动coreapi

    粘的个人笔记,格式有点乱.勿在意 core api程序包 发布直接部署包: 链接:https://pan.baidu.com/s/1zZe9H1Fevf7DdzfF-MJb9w 提取码:t0ai 源码 ...

  2. Java面试题集(一)答案汇总(1-22)

    java基础篇: 1.1.Java基础 (1)面向对象的特性:继承.封装和多态 以下都是查阅大神的博客后,摘录的内容:来源http://www.cnblogs.com/chenssy 1.继承 继承是 ...

  3. 获取url中查询字符串参数

    // 获取url中查询字符串参数 例如http://www.test.com?a=1&b=2 function RequestParamete() { var url = window.loc ...

  4. STM32入门系列-STM32时钟系统,时钟使能配置函数

    之前的推文中说到,当使用一个外设时,必须先使能它的时钟.怎么通过库函数使能时钟呢?如需了解寄存器配置时钟,可以参考<STM32F10x中文参考手册>"复位和时钟控制(RCC)&q ...

  5. 万亿级KV存储架构与实践

    一.KV 存储发展历程 我们第一代的分布式 KV 存储如下图左侧的架构所示,相信很多公司都经历过这个阶段.在客户端内做一致性哈希,在后端部署很多的 Memcached 实例,这样就实现了最基本的 KV ...

  6. Typora设置Vue主题

    平时看视频,发现好多老师使用 Typora 时,界面跟我的不一样,好看一些,后来查了下才知道老师使用了Vue主题,接下来我就记录下设置Vue主题的步骤吧 一.下载Vue主题 地址:http://the ...

  7. Java进阶专题(十六) 数据结构与算法的应用(上)

    前言 ​ 学习算法,我们不需要死记硬背那些冗长复杂的背景知识.底层原理.指令语法--需要做的是领悟算法思想.理解算法对内存空间和性能的影响,以及开动脑筋去寻求解决问题的最佳方案.相比编程领域的其他技术 ...

  8. AQS源码深入分析之条件队列-你知道Java中的阻塞队列是如何实现的吗?

    本文基于JDK-8u261源码分析 1 简介 因为CLH队列中的线程,什么线程获取到锁,什么线程进入队列排队,什么线程释放锁,这些都是不受我们控制的.所以条件队列的出现为我们提供了主动式地.只有满足指 ...

  9. .net 实现之短信验证码

    接口类型:互亿无线触发短信接口,支持发送验证码短信.订单通知短信等. 账户注册:请通过该地址开通账户http://sms.ihuyi.com/register.html 只能测试用: 实现注册页面 & ...

  10. 为什么layui表单不显示?

    当你使用表单时,Layui会对select.checkbox.radio等原始元素隐藏,从而进行美化修饰处理.但这需要依赖于form组件,所以你必须加载 form,并且执行一个实例.值得注意的是:导航 ...