DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
1、Introduction
DL解决VO问题:End-to-End VO with RCNN

2、Network structure

a.CNN based Feature Extraction

论文使用KITTI数据集。
CNN部分有9个卷积层,除了Conv6,其他的卷积层后都连接1层ReLU,则共有17层。
b、RNN based Sequential Modelling
RNN is different from CNN in that it maintains memory of its hidden states over time and has feedback loops among them, which enables its current hidden state to be a function of the previous ones.
Given a convolutional feature xk at time k, a RNN updates at time step k by

hk and yk are the hidden state and output at time k respectively.
W terms denote corresponding weight matrices.
b terms denote bias vectors.
H is an element-wise nonlinear activation function.
LSTM

Folded and unfolded LSTMs and internal structure of its unit.

is element-wise product of two vectors.
σ is sigmoid non-linearity.
tanh is hyperbolic tangent non-linearity.
W terms denote corresponding weight matrices.
b terms denote bias vectors.
ik, f k, gk, ck and ok are input gate, forget gate, input modulation gate, memory cell and output gate.
Each of the LSTM layers has 1000 hidden states.
3、损失函数及优化
The conditional probability of the poses Yt = (y1, . . . , yt) given a sequence of monocular RGB images Xt = (x1, . . . , xt) up to time t.

Optimal parameters :

The hyperparameters of the DNNs:

(pk, φk) is the ground truth pose.
(pˆk, φˆk) is the estimated ground truth pose.
κ (100 in the experiments) is a scale factor to balance the weights of positions and orientations.
N is the number of samples.
The orientation φ is represented by Euler angles rather than quaternion since quaternion is subject to an extra unit constraint which hinders the optimisation problem of DL.
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks的更多相关文章
- 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking arXiv Paper ...
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- Convolutional Neural Networks for Visual Recognition
http://cs231n.github.io/ 里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Cont ...
- Convolutional Neural Networks for Visual Recognition 1
Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...
- cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition 听课笔记
1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...
- Stanford CS231n - Convolutional Neural Networks for Visual Recognition
网易云课堂上有汉化的视频:http://study.163.com/course/courseLearn.htm?courseId=1003223001#/learn/video?lessonId=1 ...
- CS231n: Convolutional Neural Networks for Visual Recognition
https://zhuanlan.zhihu.com/p/28522637 https://zhuanlan.zhihu.com/p/21930884 mark
- 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...
- Robust Online Visual Tracking with a Single Convolutional Neural Network
Abstract:这篇论文有三个贡献,第一提出了新颖的简化的结构损失函数,能保持尽量多的训练样本,通过适应模型输出的不确定性来减少跟踪误差累积风险. 第二是增强了普通的SGD,采用了暂时的选择策略来进 ...
随机推荐
- C++各种格式转换
int main() { stringstream sstr; //--------int转string----------- int a=100; string st ...
- Pop!_OS下安装C++编程工具
Pop!_OS下C++编程 #0x0 Visual Studio Code #0x1 C++ 0x11 code::blocks #0x0 Visual Studio Code 下载安装vscode ...
- Bounding-Box(BB)regression
最近在学习RCNN,对于Bounding-Box(BB)regression能够提高边界框的精确度,对于其内容产生了很大兴趣. 主要内容学习自大神博客:https://blog.csdn.net/bi ...
- Android调用摄像机拍照(只能拍一张,第二张自动替换)
这两天我玩了玩几天没动的Android,脑子里冒出一个注意,想用Android调用摄像机(偷拍)拍照,然后存下来,在网上百度一下就有很多人说,我也试了试,7.0以下非常轻松就成功了,因为7.0一下不用 ...
- sqlserver——merge用法
merge集插入,更新,删除于一体,如果要对一个表同时进行插入,更新,删除2个或3三个操作.效率要高于单个操作. merge into tableb b --被操作表using (select id, ...
- [转载]Python ImportError: No module named 'requests'解决方法
windows解决办法1.找到easy_install.exe.一般在python的安装路径下的Scripts文件夹中,如C:\Python34\Scripts\easy_install.exe2.从 ...
- 修改map中原来的各种Key
简单描述: 做数据迁移的时候,需要展示数据库的字段信息,但是我发现 Oracle的sql查询到的结果 出来默认是大写的 和 前端vue的参数小写开头+驼峰 不太一样 所以后台取到的数据都是是引用Lis ...
- ANDROID自定义视图——onMeasure,MeasureSpec源码 流程 思路详解
简介: 在自定义view的时候,其实很简单,只需要知道3步骤: 1.测量--onMeasure():决定View的大小 2.布局--onLayout():决定View在ViewGroup中的位置 3. ...
- flask中url_for使用endpoint和视图函数名
在flask中,使用url_for 进行路由反转时,需要传递一个endpoint的值,用法如下: @app.route('/', endpoint='my_index') def index(): r ...
- python线程,进程,队列和缓存
一.线程 threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. 创建线程的两种方式1.threading.Thread import threading def f1(arg): ...