1、Introduction

DL解决VO问题:End-to-End VO with RCNN

2、Network structure

a.CNN based Feature Extraction

  论文使用KITTI数据集。

  CNN部分有9个卷积层,除了Conv6,其他的卷积层后都连接1层ReLU,则共有17层。

b、RNN based Sequential Modelling

  RNN is different from CNN in that it maintains memory of its hidden states over time and has feedback loops among them, which enables its current hidden state to be a function of the previous ones.

  Given a convolutional feature xk at time k, a RNN updates at time step k by

  hk and yk are the hidden state and output at time k respectively.

  W terms denote corresponding weight matrices.

  b terms denote bias vectors.

  H is an element-wise nonlinear activation function.

  LSTM

Folded and unfolded LSTMs and internal structure of its unit.

  is element-wise product of two vectors.

  σ is sigmoid non-linearity.

  tanh is hyperbolic tangent non-linearity.

  W terms denote corresponding weight matrices.

  b terms denote bias vectors.

  ik, f k, gk, ck and ok are input gate, forget gate, input modulation gate, memory cell and output gate.

  Each of the LSTM layers has 1000 hidden states.

3、损失函数及优化

  The conditional probability of the poses Yt = (y1, . . . , yt) given a sequence of monocular RGB images Xt = (x1, . . . , xt) up to time t.

  Optimal parameters :

  The hyperparameters of the DNNs:

  (pk, φk) is the ground truth pose.

  (pˆk, φˆk) is the estimated ground truth pose.

  κ (100 in the experiments) is a scale factor to balance the weights of positions and orientations.

  N is the number of samples.

  The orientation φ is represented by Euler angles rather than quaternion since quaternion is subject to an extra unit constraint which hinders the optimisation problem of DL.

DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks的更多相关文章

  1. 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper ...

  2. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  3. Convolutional Neural Networks for Visual Recognition

    http://cs231n.github.io/   里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Cont ...

  4. Convolutional Neural Networks for Visual Recognition 1

    Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...

  5. cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition 听课笔记

    1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...

  6. Stanford CS231n - Convolutional Neural Networks for Visual Recognition

    网易云课堂上有汉化的视频:http://study.163.com/course/courseLearn.htm?courseId=1003223001#/learn/video?lessonId=1 ...

  7. CS231n: Convolutional Neural Networks for Visual Recognition

    https://zhuanlan.zhihu.com/p/28522637 https://zhuanlan.zhihu.com/p/21930884 mark

  8. 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

    Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...

  9. Robust Online Visual Tracking with a Single Convolutional Neural Network

    Abstract:这篇论文有三个贡献,第一提出了新颖的简化的结构损失函数,能保持尽量多的训练样本,通过适应模型输出的不确定性来减少跟踪误差累积风险. 第二是增强了普通的SGD,采用了暂时的选择策略来进 ...

随机推荐

  1. POJO类中布尔类型为啥不让用isXxx命名

    源码面前,了无秘密 <阿里开发规范泰山版>(2020.04.22)-->编程规约-->(一) 命名风格-->第8条规定: [强制]POJO 类中的任何布尔类型的变量,都不 ...

  2. day38 作业

    实现并发的里两种方式 # 第一种 from multiprocessing import Process import time class MyProcess(Process): def run(s ...

  3. scala 数据结构(一):数据结构简介

    1 数据结构特点 scala集合基本介绍 1)Scala同时支持不可变集合和可变集合,不可变集合可以安全的并发访问 2)两个主要的包: 不可变集合:scala.collection.immutable ...

  4. Centos7:python 安装。yum安装软件提示 cannot find a valid baseurl for repobase7x86_64

    方法一.   1.打开 vi /etc/sysconfig/network-scripts/ifcfg-enp4s0(每个机子都可能不一样,但格式会是“ifcfg-e...”).但内容包含: < ...

  5. How to install nginx in Ubuntu

    The steps for installing the nginx on Ubuntu below. 1.install the packages first. apt-get install gc ...

  6. 微信小程序动态修改title,动态配置title,动态配置头部,微信小程序动态配置头部

    微信小程序的title是在json里面配置的 "navigationBarTitleText": "title名称" 这种title是固定死的不灵活处理一些页面 ...

  7. Shader-内轮廓自发光效果

    需求 1 基于涅菲尔反射的变形 原理 (近处的反射少,远处反射多) 1)公式(近似):F = Fscale + (1-Fscale)(1-v·n)^5 利用fresnel做边缘发光,代码 fixed ...

  8. servlet的HttpSession与HibernateSession的区别

    一.javax.servlet.http.HttpSession是一个抽象接口 它的产生:J2EE的Web程序在运行的时候,会给每一个新的访问者建立一个HttpSession,这个Session是用户 ...

  9. C++语法小记---继承中的构造和析构顺序

    继承中构造和析构的顺序 先父母,后客人,最后自己 静态变量和全局变量在最开始 析构和构造的顺序完全相反 #include <iostream> #include <string> ...

  10. 【mysql】- 索引简介篇

    简介 我们都知道mysql使用存储引擎的是InnoDB,InnoDB使用的索引的对应的数据结构是B+树 结构图: 如上图所示,我们实际用户记录是存放在B+树的最底层的节点上,这些节点也被称为叶子节点或 ...