自定义flink的RedisSource,实现从redis中读取数据,这里借鉴了flink-connector-redis_2.11的实现逻辑,实现对redis读取的逻辑封装,flink-connector-redis_2.11的使用和介绍可参考之前的博客,项目中需要引入flink-connector-redis_2.11依赖

Flink读写Redis(一)-写入Redis

Flink读写Redis(二)-flink-redis-connector代码学习

抽象redis数据

定义MyRedisRecord类,封装redis数据类型和数据对象

package com.jike.flink.examples.redis;

import org.apache.flink.streaming.connectors.redis.common.mapper.RedisDataType;

import java.io.Serializable;

public class MyRedisRecord implements Serializable {
private Object data;
private RedisDataType redisDataType; public MyRedisRecord(Object data, RedisDataType redisDataType) {
this.data = data;
this.redisDataType = redisDataType;
} public Object getData() {
return data;
} public void setData(Object data) {
this.data = data;
} public RedisDataType getRedisDataType() {
return redisDataType;
} public void setRedisDataType(RedisDataType redisDataType) {
this.redisDataType = redisDataType;
}
}

定义Redis数据读取类

首先定义接口类,定义redis的读取操作,目前这里只写了哈希表的get操作,可以增加更多的操作

package com.jike.flink.examples.redis;

import java.io.Serializable;
import java.util.Map; public interface MyRedisCommandsContainer extends Serializable {
Map<String,String> hget(String key);
void close();
}

定义一个实现类,实现对redis的读取操作

package com.jike.flink.examples.redis;

import org.apache.flink.util.Preconditions;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisSentinelPool; import java.util.HashMap;
import java.util.Map;
import java.util.Set; public class MyRedisContainer implements MyRedisCommandsContainer,Cloneable{ private static final long serialVersionUID = 1L;
private static final Logger LOG = LoggerFactory.getLogger(MyRedisContainer.class);
private final JedisPool jedisPool;
private final JedisSentinelPool jedisSentinelPool; public MyRedisContainer(JedisPool jedisPool) {
Preconditions.checkNotNull(jedisPool, "Jedis Pool can not be null");
this.jedisPool = jedisPool;
this.jedisSentinelPool = null;
} public MyRedisContainer(JedisSentinelPool sentinelPool) {
Preconditions.checkNotNull(sentinelPool, "Jedis Sentinel Pool can not be null");
this.jedisPool = null;
this.jedisSentinelPool = sentinelPool;
} @Override
public Map<String,String> hget(String key) {
Jedis jedis = null;
try {
jedis = this.getInstance();
Map<String,String> map = new HashMap<String,String>();
Set<String> fieldSet = jedis.hkeys(key);
for(String s : fieldSet){
map.put(s,jedis.hget(key,s));
}
return map;
} catch (Exception e) {
if (LOG.isErrorEnabled()) {
LOG.error("Cannot get Redis message with command HGET to key {} error message {}", new Object[]{key, e.getMessage()});
}
throw e;
} finally {
this.releaseInstance(jedis);
}
} private Jedis getInstance() {
return this.jedisSentinelPool != null ? this.jedisSentinelPool.getResource() : this.jedisPool.getResource();
} private void releaseInstance(Jedis jedis) {
if (jedis != null) {
try {
jedis.close();
} catch (Exception var3) {
LOG.error("Failed to close (return) instance to pool", var3);
} }
} public void close() {
if (this.jedisPool != null) {
this.jedisPool.close();
} if (this.jedisSentinelPool != null) {
this.jedisSentinelPool.close();
} }
}

定义redis读取操作对象的创建者类

该类用来根据不同的配置生成不同的对象,这里考虑了直连redis和哨兵模式两张情况,后续还可以考虑redis集群的情形

package com.jike.flink.examples.redis;

import org.apache.commons.pool2.impl.GenericObjectPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisConfigBase;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisSentinelConfig;
import org.apache.flink.util.Preconditions;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisSentinelPool; public class MyRedisCommandsContainerBuilder {
public MyRedisCommandsContainerBuilder(){ } public static MyRedisCommandsContainer build(FlinkJedisConfigBase flinkJedisConfigBase) {
if (flinkJedisConfigBase instanceof FlinkJedisPoolConfig) {
FlinkJedisPoolConfig flinkJedisPoolConfig = (FlinkJedisPoolConfig)flinkJedisConfigBase;
return build(flinkJedisPoolConfig);
} else if (flinkJedisConfigBase instanceof FlinkJedisSentinelConfig) {
FlinkJedisSentinelConfig flinkJedisSentinelConfig = (FlinkJedisSentinelConfig)flinkJedisConfigBase;
return build(flinkJedisSentinelConfig);
} else {
throw new IllegalArgumentException("Jedis configuration not found");
}
} public static MyRedisCommandsContainer build(FlinkJedisPoolConfig jedisPoolConfig) {
Preconditions.checkNotNull(jedisPoolConfig, "Redis pool config should not be Null");
GenericObjectPoolConfig genericObjectPoolConfig = new GenericObjectPoolConfig();
genericObjectPoolConfig.setMaxIdle(jedisPoolConfig.getMaxIdle());
genericObjectPoolConfig.setMaxTotal(jedisPoolConfig.getMaxTotal());
genericObjectPoolConfig.setMinIdle(jedisPoolConfig.getMinIdle());
JedisPool jedisPool = new JedisPool(genericObjectPoolConfig, jedisPoolConfig.getHost(), jedisPoolConfig.getPort(), jedisPoolConfig.getConnectionTimeout(), jedisPoolConfig.getPassword(), jedisPoolConfig.getDatabase());
return new MyRedisContainer(jedisPool);
} public static MyRedisCommandsContainer build(FlinkJedisSentinelConfig jedisSentinelConfig) {
Preconditions.checkNotNull(jedisSentinelConfig, "Redis sentinel config should not be Null");
GenericObjectPoolConfig genericObjectPoolConfig = new GenericObjectPoolConfig();
genericObjectPoolConfig.setMaxIdle(jedisSentinelConfig.getMaxIdle());
genericObjectPoolConfig.setMaxTotal(jedisSentinelConfig.getMaxTotal());
genericObjectPoolConfig.setMinIdle(jedisSentinelConfig.getMinIdle());
JedisSentinelPool jedisSentinelPool = new JedisSentinelPool(jedisSentinelConfig.getMasterName(), jedisSentinelConfig.getSentinels(), genericObjectPoolConfig, jedisSentinelConfig.getConnectionTimeout(), jedisSentinelConfig.getSoTimeout(), jedisSentinelConfig.getPassword(), jedisSentinelConfig.getDatabase());
return new MyRedisContainer(jedisSentinelPool);
} }

redis操作描述类

package com.jike.flink.examples.redis;

import org.apache.flink.streaming.connectors.redis.common.mapper.RedisDataType;

public enum MyRedisCommand {
HGET(RedisDataType.HASH); private RedisDataType redisDataType; private MyRedisCommand(RedisDataType redisDataType) {
this.redisDataType = redisDataType;
} public RedisDataType getRedisDataType() {
return this.redisDataType;
}
} package com.jike.flink.examples.redis; import org.apache.flink.streaming.connectors.redis.common.mapper.RedisDataType;
import org.apache.flink.util.Preconditions; import java.io.Serializable; public class MyRedisCommandDescription implements Serializable {
private static final long serialVersionUID = 1L;
private MyRedisCommand redisCommand;
private String additionalKey; public MyRedisCommandDescription(MyRedisCommand redisCommand, String additionalKey) {
Preconditions.checkNotNull(redisCommand, "Redis command type can not be null");
this.redisCommand = redisCommand;
this.additionalKey = additionalKey;
if ((redisCommand.getRedisDataType() == RedisDataType.HASH || redisCommand.getRedisDataType() == RedisDataType.SORTED_SET) && additionalKey == null) {
throw new IllegalArgumentException("Hash and Sorted Set should have additional key");
}
} public MyRedisCommandDescription(MyRedisCommand redisCommand) {
this(redisCommand, (String)null);
} public MyRedisCommand getCommand() {
return this.redisCommand;
} public String getAdditionalKey() {
return this.additionalKey;
}
}

RedisSource

定义flink redis source的实现,该类构造方法接收两个参数,包括redis配置信息以及要读取的redis数据类型信息;open方法会在source打开执行,用了完成redis操作类对象的创建;run方法会一直读取redis数据,并根据数据类型调用对应的redis操作,封装成MyRedisRecord对象,够后续处理

package com.jike.flink.examples.redis;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisConfigBase;
import org.apache.flink.util.Preconditions; public class RedisSource extends RichSourceFunction<MyRedisRecord>{ private static final long serialVersionUID = 1L;
private String additionalKey;
private MyRedisCommand redisCommand;
private FlinkJedisConfigBase flinkJedisConfigBase;
private MyRedisCommandsContainer redisCommandsContainer;
private volatile boolean isRunning = true; public RedisSource(FlinkJedisConfigBase flinkJedisConfigBase, MyRedisCommandDescription redisCommandDescription) {
Preconditions.checkNotNull(flinkJedisConfigBase, "Redis connection pool config should not be null");
Preconditions.checkNotNull(redisCommandDescription, "MyRedisCommandDescription can not be null");
this.flinkJedisConfigBase = flinkJedisConfigBase;
this.redisCommand = redisCommandDescription.getCommand();
this.additionalKey = redisCommandDescription.getAdditionalKey();
} @Override
public void open(Configuration parameters) throws Exception {
this.redisCommandsContainer = MyRedisCommandsContainerBuilder.build(this.flinkJedisConfigBase);
} @Override
public void run(SourceContext sourceContext) throws Exception {
while (isRunning){
switch(this.redisCommand) {
case HGET:
sourceContext.collect(new MyRedisRecord(this.redisCommandsContainer.hget(this.additionalKey), this.redisCommand.getRedisDataType()));
break;
default:
throw new IllegalArgumentException("Cannot process such data type: " + this.redisCommand);
}
} } @Override
public void cancel() {
isRunning = false;
if (this.redisCommandsContainer != null) {
this.redisCommandsContainer.close();
}
}
}

使用

redis中的哈希表保存个各个单词的词频,统计词频最大的单词

package com.jike.flink.examples.redis;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisDataType;
import org.apache.flink.util.Collector; import java.util.Map; public class MyMapRedisRecordSplitter implements FlatMapFunction<MyRedisRecord, Tuple2<String,Integer>> {
@Override
public void flatMap(MyRedisRecord myRedisRecord, Collector<Tuple2<String, Integer>> collector) throws Exception {
assert myRedisRecord.getRedisDataType() == RedisDataType.HASH;
Map<String,String> map = (Map<String,String>)myRedisRecord.getData();
for(Map.Entry<String,String> e : map.entrySet()){
collector.collect(new Tuple2<>(e.getKey(),Integer.valueOf(e.getValue())));
}
}
} package com.jike.flink.examples.redis; import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig; public class MaxCount{
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment executionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("ip").setPort(30420).setPassword("passwd").build();
DataStreamSource<MyRedisRecord> source = executionEnvironment.addSource(new RedisSource(conf,new MyRedisCommandDescription(MyRedisCommand.HGET,"flink")));
DataStream<Tuple2<String, Integer>> max = source.flatMap(new MyMapRedisRecordSplitter()).timeWindowAll(Time.milliseconds(5000)).maxBy(1);
max.print().setParallelism(1);
executionEnvironment.execute();
}
}

结果

Flink读写Redis(三)-读取redis数据的更多相关文章

  1. ELK之logstash收集日志写入redis及读取redis

    logstash->redis->logstash->elasticsearch 1.安装部署redis cd /usr/local/src wget http://download ...

  2. jxl读写excel, poi读写excel,word, 读取Excel数据到MySQL

    这篇blog是介绍: 1. java中的poi技术读取Excel数据,然后保存到MySQL数据中. 2. jxl读写excel 你也可以在 : java的poi技术读取和导入Excel了解到写入Exc ...

  3. 《闲扯Redis三》Redis五种数据类型之List型

    一.前言 Redis 提供了5种数据类型:String(字符串).Hash(哈希).List(列表).Set(集合).Zset(有序集合),理解每种数据类型的特点对于redis的开发和运维非常重要. ...

  4. 三、Redis基本操作——List

    小喵的唠叨话:前面我们介绍了Redis的string的数据结构的原理和操作.当时我们提到Redis的键值对不仅仅是字符串.而这次我们就要介绍Redis的第二个数据结构了,List(链表).由于List ...

  5. redis+twemproxy实现redis集群

    Redis+TwemProxy(nutcracker)集群方案部署记录 转自: http://www.cnblogs.com/kevingrace/p/5685401.html Twemproxy 又 ...

  6. 数据库应用之--Redis+mysql实现大量数据的读写,以及高并发

    一.开发背景 在项目开发过程中中遇到了以下三个需求: 1. 多个用户同时上传数据: 2. 数据库需要支持同时读写: 3. 1分钟内存储上万条数据: 根据对Mysql的测试情况,遇到以下问题: 1. 最 ...

  7. 在 Istio 中实现 Redis 集群的数据分片、读写分离和流量镜像

    Redis 是一个高性能的 key-value 存储系统,被广泛用于微服务架构中.如果我们想要使用 Redis 集群模式提供的高级特性,则需要对客户端代码进行改动,这带来了应用升级和维护的一些困难.利 ...

  8. logstash读取redis数据

    类型设置: logstash中的redis插件,指定了三种方式来读取redis队列中的信息. list=>BLPOP                                    (相当 ...

  9. 5.1.1 读取Redis 数据

    Redis 服务器是Logstash 推荐的Broker选择,Broker 角色就意味会同时存在输入和输出两个插件. 5.1.1 读取Redis 数据 LogStash::Input::Redis 支 ...

随机推荐

  1. docker漏洞复现环境搭建

    0x00 docker简介 把原来的笔记整理了一下,结合前几天的一个漏洞,整理一篇简单的操作文档,希望能帮助有缘人. docker是一个开源的应用容器引擎,开发者可以打包自己的应用到容器里面,然后迁移 ...

  2. 微信公众号获取openid(php实例)

    微信公众号获取openid 公众号获取openid的方法跟小程序获取openid其实是一样的,只是code获取的方式不一样 小程序获取code: 用户授权登录时调用wx.login即可获取到code ...

  3. python-基础入门-序

    安装,直接百度Python就行,我是2.7的版本. 我的资料先是<笨办法学Python>,作为简单的入门它写的很有趣. 我有简单的c语言的基础,把它过完后上核心编程,当然,一切都是为了ct ...

  4. 全网最全!这份深入讲解jdk和jvm原理的笔记,刷新了我对JVM的认知

    前言 前两天和朋友探讨技术的时候有聊到JVM和JDK这一块,聊到这里两个人就像高山流水遇知音那是根本停不下来,事后我想着趁现在印象还比较深刻就把这些东西整理起来分享给大家来帮助更多的人吧.话不多说,满 ...

  5. 攻克solo第七课(Randy Rhoads风格)

    本期文章,笔者将通过Guitar Pro 7吉他软件跟大家分享一下Randy Rhoads的solo句子. 相信很多精研电吉他的朋友都会听过这个一手把Ozzy Osbourne从离开黑色安息日乐队的深 ...

  6. Hadoop优化之数据压缩

    bBHadoop数据压缩 概述 运行hadoop程序时,I/O操作.网络数据传输.shuffle和merge要花大量的时间,尤其是数据规模很大和工作负载密集的情况下,这个时候,使用数据压缩可以提高效率 ...

  7. 【ACwing 98】分形之城——分形

    (题面来自ACwing) 城市的规划在城市建设中是个大问题. 不幸的是,很多城市在开始建设的时候并没有很好的规划,城市规模扩大之后规划不合理的问题就开始显现. 而这座名为 Fractal 的城市设想了 ...

  8. 洛谷 P1284 三角形牧场 题解(背包+海伦公式)

    题目链接 题目大意 给你 n块木板(n<=40),每块木板长度为\(l[i]<=40\) 每块木板都要用,求最大的三角形面积×100,答案直接舍去小数 题目思路 首先如果已知三条边的长度可 ...

  9. 求1-1e11内的素数个数(HDU 5901 Count primes )

    参考链接:https://blog.csdn.net/Dylan_Frank/article/details/54428481 #include <bits/stdc++.h> #defi ...

  10. HHKB Programming Contest 2020 D - Squares 题解(思维)

    题目链接 题目大意 给你一个边长为n的正方形和边长为a和b的正方形,要求把边长为a和b的正方形放在长度为n的正方形内,且没有覆盖(可以相邻)求有多少种放法(mod 1e9+7) 题目思路 这个思路不是 ...