自定义flink的RedisSource,实现从redis中读取数据,这里借鉴了flink-connector-redis_2.11的实现逻辑,实现对redis读取的逻辑封装,flink-connector-redis_2.11的使用和介绍可参考之前的博客,项目中需要引入flink-connector-redis_2.11依赖

Flink读写Redis(一)-写入Redis

Flink读写Redis(二)-flink-redis-connector代码学习

抽象redis数据

定义MyRedisRecord类,封装redis数据类型和数据对象

package com.jike.flink.examples.redis;

import org.apache.flink.streaming.connectors.redis.common.mapper.RedisDataType;

import java.io.Serializable;

public class MyRedisRecord implements Serializable {
private Object data;
private RedisDataType redisDataType; public MyRedisRecord(Object data, RedisDataType redisDataType) {
this.data = data;
this.redisDataType = redisDataType;
} public Object getData() {
return data;
} public void setData(Object data) {
this.data = data;
} public RedisDataType getRedisDataType() {
return redisDataType;
} public void setRedisDataType(RedisDataType redisDataType) {
this.redisDataType = redisDataType;
}
}

定义Redis数据读取类

首先定义接口类,定义redis的读取操作,目前这里只写了哈希表的get操作,可以增加更多的操作

package com.jike.flink.examples.redis;

import java.io.Serializable;
import java.util.Map; public interface MyRedisCommandsContainer extends Serializable {
Map<String,String> hget(String key);
void close();
}

定义一个实现类,实现对redis的读取操作

package com.jike.flink.examples.redis;

import org.apache.flink.util.Preconditions;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisSentinelPool; import java.util.HashMap;
import java.util.Map;
import java.util.Set; public class MyRedisContainer implements MyRedisCommandsContainer,Cloneable{ private static final long serialVersionUID = 1L;
private static final Logger LOG = LoggerFactory.getLogger(MyRedisContainer.class);
private final JedisPool jedisPool;
private final JedisSentinelPool jedisSentinelPool; public MyRedisContainer(JedisPool jedisPool) {
Preconditions.checkNotNull(jedisPool, "Jedis Pool can not be null");
this.jedisPool = jedisPool;
this.jedisSentinelPool = null;
} public MyRedisContainer(JedisSentinelPool sentinelPool) {
Preconditions.checkNotNull(sentinelPool, "Jedis Sentinel Pool can not be null");
this.jedisPool = null;
this.jedisSentinelPool = sentinelPool;
} @Override
public Map<String,String> hget(String key) {
Jedis jedis = null;
try {
jedis = this.getInstance();
Map<String,String> map = new HashMap<String,String>();
Set<String> fieldSet = jedis.hkeys(key);
for(String s : fieldSet){
map.put(s,jedis.hget(key,s));
}
return map;
} catch (Exception e) {
if (LOG.isErrorEnabled()) {
LOG.error("Cannot get Redis message with command HGET to key {} error message {}", new Object[]{key, e.getMessage()});
}
throw e;
} finally {
this.releaseInstance(jedis);
}
} private Jedis getInstance() {
return this.jedisSentinelPool != null ? this.jedisSentinelPool.getResource() : this.jedisPool.getResource();
} private void releaseInstance(Jedis jedis) {
if (jedis != null) {
try {
jedis.close();
} catch (Exception var3) {
LOG.error("Failed to close (return) instance to pool", var3);
} }
} public void close() {
if (this.jedisPool != null) {
this.jedisPool.close();
} if (this.jedisSentinelPool != null) {
this.jedisSentinelPool.close();
} }
}

定义redis读取操作对象的创建者类

该类用来根据不同的配置生成不同的对象,这里考虑了直连redis和哨兵模式两张情况,后续还可以考虑redis集群的情形

package com.jike.flink.examples.redis;

import org.apache.commons.pool2.impl.GenericObjectPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisConfigBase;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisSentinelConfig;
import org.apache.flink.util.Preconditions;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisSentinelPool; public class MyRedisCommandsContainerBuilder {
public MyRedisCommandsContainerBuilder(){ } public static MyRedisCommandsContainer build(FlinkJedisConfigBase flinkJedisConfigBase) {
if (flinkJedisConfigBase instanceof FlinkJedisPoolConfig) {
FlinkJedisPoolConfig flinkJedisPoolConfig = (FlinkJedisPoolConfig)flinkJedisConfigBase;
return build(flinkJedisPoolConfig);
} else if (flinkJedisConfigBase instanceof FlinkJedisSentinelConfig) {
FlinkJedisSentinelConfig flinkJedisSentinelConfig = (FlinkJedisSentinelConfig)flinkJedisConfigBase;
return build(flinkJedisSentinelConfig);
} else {
throw new IllegalArgumentException("Jedis configuration not found");
}
} public static MyRedisCommandsContainer build(FlinkJedisPoolConfig jedisPoolConfig) {
Preconditions.checkNotNull(jedisPoolConfig, "Redis pool config should not be Null");
GenericObjectPoolConfig genericObjectPoolConfig = new GenericObjectPoolConfig();
genericObjectPoolConfig.setMaxIdle(jedisPoolConfig.getMaxIdle());
genericObjectPoolConfig.setMaxTotal(jedisPoolConfig.getMaxTotal());
genericObjectPoolConfig.setMinIdle(jedisPoolConfig.getMinIdle());
JedisPool jedisPool = new JedisPool(genericObjectPoolConfig, jedisPoolConfig.getHost(), jedisPoolConfig.getPort(), jedisPoolConfig.getConnectionTimeout(), jedisPoolConfig.getPassword(), jedisPoolConfig.getDatabase());
return new MyRedisContainer(jedisPool);
} public static MyRedisCommandsContainer build(FlinkJedisSentinelConfig jedisSentinelConfig) {
Preconditions.checkNotNull(jedisSentinelConfig, "Redis sentinel config should not be Null");
GenericObjectPoolConfig genericObjectPoolConfig = new GenericObjectPoolConfig();
genericObjectPoolConfig.setMaxIdle(jedisSentinelConfig.getMaxIdle());
genericObjectPoolConfig.setMaxTotal(jedisSentinelConfig.getMaxTotal());
genericObjectPoolConfig.setMinIdle(jedisSentinelConfig.getMinIdle());
JedisSentinelPool jedisSentinelPool = new JedisSentinelPool(jedisSentinelConfig.getMasterName(), jedisSentinelConfig.getSentinels(), genericObjectPoolConfig, jedisSentinelConfig.getConnectionTimeout(), jedisSentinelConfig.getSoTimeout(), jedisSentinelConfig.getPassword(), jedisSentinelConfig.getDatabase());
return new MyRedisContainer(jedisSentinelPool);
} }

redis操作描述类

package com.jike.flink.examples.redis;

import org.apache.flink.streaming.connectors.redis.common.mapper.RedisDataType;

public enum MyRedisCommand {
HGET(RedisDataType.HASH); private RedisDataType redisDataType; private MyRedisCommand(RedisDataType redisDataType) {
this.redisDataType = redisDataType;
} public RedisDataType getRedisDataType() {
return this.redisDataType;
}
} package com.jike.flink.examples.redis; import org.apache.flink.streaming.connectors.redis.common.mapper.RedisDataType;
import org.apache.flink.util.Preconditions; import java.io.Serializable; public class MyRedisCommandDescription implements Serializable {
private static final long serialVersionUID = 1L;
private MyRedisCommand redisCommand;
private String additionalKey; public MyRedisCommandDescription(MyRedisCommand redisCommand, String additionalKey) {
Preconditions.checkNotNull(redisCommand, "Redis command type can not be null");
this.redisCommand = redisCommand;
this.additionalKey = additionalKey;
if ((redisCommand.getRedisDataType() == RedisDataType.HASH || redisCommand.getRedisDataType() == RedisDataType.SORTED_SET) && additionalKey == null) {
throw new IllegalArgumentException("Hash and Sorted Set should have additional key");
}
} public MyRedisCommandDescription(MyRedisCommand redisCommand) {
this(redisCommand, (String)null);
} public MyRedisCommand getCommand() {
return this.redisCommand;
} public String getAdditionalKey() {
return this.additionalKey;
}
}

RedisSource

定义flink redis source的实现,该类构造方法接收两个参数,包括redis配置信息以及要读取的redis数据类型信息;open方法会在source打开执行,用了完成redis操作类对象的创建;run方法会一直读取redis数据,并根据数据类型调用对应的redis操作,封装成MyRedisRecord对象,够后续处理

package com.jike.flink.examples.redis;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisConfigBase;
import org.apache.flink.util.Preconditions; public class RedisSource extends RichSourceFunction<MyRedisRecord>{ private static final long serialVersionUID = 1L;
private String additionalKey;
private MyRedisCommand redisCommand;
private FlinkJedisConfigBase flinkJedisConfigBase;
private MyRedisCommandsContainer redisCommandsContainer;
private volatile boolean isRunning = true; public RedisSource(FlinkJedisConfigBase flinkJedisConfigBase, MyRedisCommandDescription redisCommandDescription) {
Preconditions.checkNotNull(flinkJedisConfigBase, "Redis connection pool config should not be null");
Preconditions.checkNotNull(redisCommandDescription, "MyRedisCommandDescription can not be null");
this.flinkJedisConfigBase = flinkJedisConfigBase;
this.redisCommand = redisCommandDescription.getCommand();
this.additionalKey = redisCommandDescription.getAdditionalKey();
} @Override
public void open(Configuration parameters) throws Exception {
this.redisCommandsContainer = MyRedisCommandsContainerBuilder.build(this.flinkJedisConfigBase);
} @Override
public void run(SourceContext sourceContext) throws Exception {
while (isRunning){
switch(this.redisCommand) {
case HGET:
sourceContext.collect(new MyRedisRecord(this.redisCommandsContainer.hget(this.additionalKey), this.redisCommand.getRedisDataType()));
break;
default:
throw new IllegalArgumentException("Cannot process such data type: " + this.redisCommand);
}
} } @Override
public void cancel() {
isRunning = false;
if (this.redisCommandsContainer != null) {
this.redisCommandsContainer.close();
}
}
}

使用

redis中的哈希表保存个各个单词的词频,统计词频最大的单词

package com.jike.flink.examples.redis;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisDataType;
import org.apache.flink.util.Collector; import java.util.Map; public class MyMapRedisRecordSplitter implements FlatMapFunction<MyRedisRecord, Tuple2<String,Integer>> {
@Override
public void flatMap(MyRedisRecord myRedisRecord, Collector<Tuple2<String, Integer>> collector) throws Exception {
assert myRedisRecord.getRedisDataType() == RedisDataType.HASH;
Map<String,String> map = (Map<String,String>)myRedisRecord.getData();
for(Map.Entry<String,String> e : map.entrySet()){
collector.collect(new Tuple2<>(e.getKey(),Integer.valueOf(e.getValue())));
}
}
} package com.jike.flink.examples.redis; import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig; public class MaxCount{
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment executionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("ip").setPort(30420).setPassword("passwd").build();
DataStreamSource<MyRedisRecord> source = executionEnvironment.addSource(new RedisSource(conf,new MyRedisCommandDescription(MyRedisCommand.HGET,"flink")));
DataStream<Tuple2<String, Integer>> max = source.flatMap(new MyMapRedisRecordSplitter()).timeWindowAll(Time.milliseconds(5000)).maxBy(1);
max.print().setParallelism(1);
executionEnvironment.execute();
}
}

结果

Flink读写Redis(三)-读取redis数据的更多相关文章

  1. ELK之logstash收集日志写入redis及读取redis

    logstash->redis->logstash->elasticsearch 1.安装部署redis cd /usr/local/src wget http://download ...

  2. jxl读写excel, poi读写excel,word, 读取Excel数据到MySQL

    这篇blog是介绍: 1. java中的poi技术读取Excel数据,然后保存到MySQL数据中. 2. jxl读写excel 你也可以在 : java的poi技术读取和导入Excel了解到写入Exc ...

  3. 《闲扯Redis三》Redis五种数据类型之List型

    一.前言 Redis 提供了5种数据类型:String(字符串).Hash(哈希).List(列表).Set(集合).Zset(有序集合),理解每种数据类型的特点对于redis的开发和运维非常重要. ...

  4. 三、Redis基本操作——List

    小喵的唠叨话:前面我们介绍了Redis的string的数据结构的原理和操作.当时我们提到Redis的键值对不仅仅是字符串.而这次我们就要介绍Redis的第二个数据结构了,List(链表).由于List ...

  5. redis+twemproxy实现redis集群

    Redis+TwemProxy(nutcracker)集群方案部署记录 转自: http://www.cnblogs.com/kevingrace/p/5685401.html Twemproxy 又 ...

  6. 数据库应用之--Redis+mysql实现大量数据的读写,以及高并发

    一.开发背景 在项目开发过程中中遇到了以下三个需求: 1. 多个用户同时上传数据: 2. 数据库需要支持同时读写: 3. 1分钟内存储上万条数据: 根据对Mysql的测试情况,遇到以下问题: 1. 最 ...

  7. 在 Istio 中实现 Redis 集群的数据分片、读写分离和流量镜像

    Redis 是一个高性能的 key-value 存储系统,被广泛用于微服务架构中.如果我们想要使用 Redis 集群模式提供的高级特性,则需要对客户端代码进行改动,这带来了应用升级和维护的一些困难.利 ...

  8. logstash读取redis数据

    类型设置: logstash中的redis插件,指定了三种方式来读取redis队列中的信息. list=>BLPOP                                    (相当 ...

  9. 5.1.1 读取Redis 数据

    Redis 服务器是Logstash 推荐的Broker选择,Broker 角色就意味会同时存在输入和输出两个插件. 5.1.1 读取Redis 数据 LogStash::Input::Redis 支 ...

随机推荐

  1. windows下mysql的远程访问和权限设置

    如果想要用户root可以远程登录,则可通过修改user表中root用户对应的host字段值为"%"即可.我们用以下语句进行修改: update user set host = '% ...

  2. MySQL错误修复:Table xx is marked as crashed and last (automatic?) repair failed

    问题一 Table xx is marked as crashed and last (automatic?) repair failed 有开发找到我,说数据库坏了,连不上数据库,看了下 MySQL ...

  3. 仿射密码-fanfie--affine

    仿射密码 仿射密码 是一种专情密码,一对一替换 ~~ 加密函数是 e(x) = ax + b (mod m) 其中a和m 互质,m是字母的数目. 解码函数是 d(x) = a^-1(x - b) (m ...

  4. java大厂面经-阿里腾讯、网易美团、京东、华为、快手、字节全在这里了

    前言 在这篇文章详细说了该如何去复习,之前也答应各位把面经整理一下,但是因为入职的事情耽搁了,现在整理出来回馈给大家! 美团 一面 0.自我介绍1.问项目(项目详细介绍.用到什么技术.有什么优化)2. ...

  5. 如何将IDM中的进程设置进行备份

    有时候我们想用浏览器自带的下载管理器进行下载,但是一点下载却被IDM(Internet Download Manager)自动嗅探捕获并下载,还有人因为重装系统使得之前更改IDM的设置都失效,只得重新 ...

  6. 吉他入门:攻克solo第七课(Randy Rhoads风格)

    本期文章,主要和大家分享一下Randy Rhoads的solo句子.相信很多精研电吉他的朋友都会听过这个一手把Ozzy Osbourne从离开黑色安息日乐队的深渊中捞出来的天才吉他手.如果你暂时不了解 ...

  7. Shamir秘密共享方案 (Python)

    Shamir's Secret Sharing scheme is an important cryptographic algorithm that allows private informati ...

  8. 经典面试题解析:这道 C 编程面试题居然有如此多的解法!

    问题描述 任意给定一个32位无符号整数n,求n的二进制表示中1的个数,比如n = 5(0101)时,返回2,n = 15(1111)时,返回4 这也是一道比较经典的题目了,相信不少人面试的时候可能遇到 ...

  9. framework中的sentinel

    引入切面: 切面+sentinel-web-servlet private void initDataSource() { String zkUrl = zaSentinelConfig.getDat ...

  10. C#中的WinForm问题——如何设置窗体的大小为超过屏幕显示的最大尺寸?

    今天在学习C#时遇到了一个问题,在此记录下来,留作日后总结复习之用,也分享给有同样问题和困扰的园友. 我手上的电脑是笔记本电脑,屏幕的尺寸大小为1366*768,然而项目所使用的屏幕大小为1920*1 ...