HDU 2045 不容易系列之(3)—— LELE的RPG难题(递归/动态规划)
不容易系列之(3)—— LELE的RPG难题
有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.
以上就是著名的RPG难题.
如果你是Cole,我想你一定会想尽办法帮助LELE解决这个问题的;如果不是,看在众多漂亮的痛不欲生的Cole女的面子上,你也不会袖手旁观吧?
2
6
#include <cstdio>
#include <iostream>
using namespace std;
int n;
long long a[]={,,,};
long long f(int n)
{
if(n<=)return a[n];
if(a[n]==)a[n]=f(n-)+*f(n-);
return a[n];
}
int main()
{
while(cin>>n)
{printf("%I64d\n",f(n));}
return ;
}
#include <cstdio>
#include <iostream>
using namespace std;
int n,i;
long long dp[]= {,,,};
int main()
{
ios::sync_with_stdio(false);
for(i=; i<; i++)//预处理先算出所有答案,也可以读取一个算一个
dp[i]=dp[i-]+dp[i-]*;//不保存可能会超时,边读边算效率要看数据量
while(cin>>i)
printf("%I64d\n",dp[i]);
return ;
}
HDU 2045 不容易系列之(3)—— LELE的RPG难题(递归/动态规划)的更多相关文章
- HDU 2045 不容易系列之(3)―― LELE的RPG难题(递推)
题意:有排成一行的n个方格,用红(Red).粉(Pink).绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法. 题解:本来当n=1时, ...
- hdu 2045 不容易系列之(3)—— LELE的RPG难题
解题思路: f(n)=1,2,.....n-2,n-1,n 前n-2个已经涂好,那么n-1有两种可能 1.n-1与n-2和1 的颜色都不同 1 粉, n-2 红, n-1 绿. 那么n的颜色 ...
- HDU 2045 不容易系列之(3)—— LELE的RPG难题 (递推)
题意:略. 析:首先是假设前n-2个已经放好了,那么放第 n 个时,先考虑一下第 n-1 放的是什么,那么有两种情况. 如果n-1放的是和第1个一样的,那么第 n 个就可以在n-2的基础上放2个,也就 ...
- HDU 2045 不容易系列之(3)—— LELE的RPG难题(递推)
点我看题目 题意 : 中文题不解释. 思路 :先算了第3个第4个,算的时候发现只要在已经枚举出来的前边的状态中往后添加字母就行了,如果两个的都已经表示出来了,那第三个就可以在每个第二个后边加一个,在 ...
- HDU 2045 不easy系列之(3)—— LELE的RPG难题
思路: 1.若前n-1位涂的颜色是符合条件的,则因为首尾不同,再加入一位时,仅仅有1种方法:即s[n] = s[n-1] 2.若前n-1位组成的串不符合,再加入一位后合法.即由于首尾同样而引起的不合法 ...
- hdoj 2045 不容易系列之(3)—— LELE的RPG难题
不容易系列之(3)—— LELE的RPG难题 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- 2045不容易系列之(3)—— LELE的RPG难题
Problem Description人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即”可乐”),经过多方打探,某资深Cole终于知道了原因,原 ...
- Hdoj 2045.不容易系列之(3)—— LELE的RPG难题 题解
Problem Description 人称"AC女之杀手"的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多"Cole"(LELE的粉丝,即"可乐 ...
- 【HDOJ】2045 不容易系列之(3)—— LELE的RPG难题
着色问题,递推,当超过3个块时,规律明显,此时可以是n-2的头尾重复+与头尾不同颜色,也可以是n-1+与头尾均不相同眼色情况.经典递推.注意long long. #include <stdio. ...
随机推荐
- iOS基础 - 瀑布流
一.瀑布流简介 瀑布流,又称瀑布流式布局.是比较流行的一种网站页面布局,视觉表现为参差不齐的多栏布局,随着页面滚动条向下滚动,这种布局还会不断加载数据块并附加至当前尾部.最早采用此布局的网站是Pint ...
- 如何解决 Django中出现的 [Errno 13] Permission denied问题
环境:linux 如果你使用了Apache部署了Django项目,在上传文件时可能会出现 “[Errno 13] Permission denied:某目录”的错误. 这是因为apache没有权限在该 ...
- vs2012+Spring.Core.dll
Ⅰ.Spring的点点滴滴--序章 spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架 .net篇(环境为vs2012+Spring.Core.dll) 新建一个控制台 u ...
- 一致性hash和虚拟节点
consistent hashing 算法的原理 consistent hashing 是一种 hash 算法,简单的说,在移除 / 添加一个 cache 时,它能够尽可能小的改变已存在key 映射关 ...
- Apache指南:CGI动态页面
概要 相关模块 相关指令 mod_alias mod_cgi AddHandler Options ScriptAlias CGI(公共网关接口[Common Gateway Interface])定 ...
- [转]iOS: About diagnostic capabilities
Source:http://support.apple.com/kb/HT6331 Each of these diagnostic capabilities requires the user to ...
- Object-c学习之路六(oc字符串文件读写)
// // main.m // NSString // // Created by WildCat on 13-7-25. // Copyright (c) 2013年 wildcat. All ri ...
- JavaScript 面向对象编程(三)如何写类和子类
在JavaScript面向对象编程(一)原型与继承和JavaScript面向对象编程(二)构造函数和类中,我们分别讨论了JavaScript中面向对象的原型和类的概念.基于这两点理论,本篇文章用一个简 ...
- 简单动态规划——三逆数的O(N^2)解法!
[算法]简单动态规划——三逆数的O(N^2)解法! 问题描述: 三逆数定义:给一个数的序列A[0,1,....N-1]),当i<j<k且A[i]>A[j]>A[k]时,称作ai ...
- Apache遇到的问题:APR not found
#./configure --prefix……检查编辑环境时出现: checking for APR... no configure: error: APR not found . Please r ...