【Codeforces549F】Yura and Developers [单调栈][二分]
Yura and Developers
Time Limit: 20 Sec Memory Limit: 512 MB
Description

Input

Output
Sample Input
5 2 4 4
Sample Output
HINT

Solution
首先,我们先用单调栈求出以点 i 作为最大值的区间 [pre_i, suc_i]。然后显然就是 求 [pre_i, suc_i] 内有几个区间的和与val[i] %k同余。
我们记区间为 [L, mid, R](i 为mid,pre_i 为 L,suc_i 为R),显然我们可以枚举长度小的半个区间。这时效率是O(nlogn)的。
那么只要能求出另外一半的贡献即可,假定我们枚举 [L, mid - 1] 的一个 点begin。那么 [begin, mid - 1] 的和是固定的,我们又知道总和应该为多少(%k同余)。所以我们就可以知道剩下需要提供多少值。 问题就转化为了求:[mid, mid ~ R] 中有几个以 mid 为左端点,mid~R为右端点的区间 的和 %k余 一个定值。
我们考虑这个东西怎么求,显然可以将问题转化为查前缀和形式:
我们已知 [1, mid - 1] 的和%k的值,又由于[mid, mid~R] 要提供一个定值的贡献,所以可以算出 [1, mid~R] 要余多少。
那么我们就可以通过查前缀和解决这个子问题,现在的问题又转化为了 如何查询一个区间 [L, R] 内某一定值数的个数:
显然我们可以 把位置加入在一个以值为下标的vector中,在这个vector中,二分查询位置<=R的个数即可,减去 <=(L - 1) 的即可。
这样我们就解决了假定[L, mid - 1]固定的一部分,假定[mid + 1, R]固定同理。
我们就解决了这道题啦!QWQ
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<vector>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9 + ; int n, k;
s64 val[ONE];
int pre[ONE], suc[ONE];
s64 sum[ONE], sum_B[ONE];
s64 Ans; vector <int> A[ONE], B[ONE]; int get()
{
int res;char c;
while( (c=getchar())< || c> );
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res;
} void Deal_first()
{
int stk[ONE], top = ;
for(int i = ; i <= n; i++)
{
while(top && val[i] > val[stk[top]])
suc[stk[top--]] = i - ;
pre[i] = stk[top] + ;
stk[++top] = i;
}
while(top) suc[stk[top--]] = n; for(int i = ; i <= n; i++)
sum[i] = (sum[i - ] + val[i]) % k;
for(int i = n; i >= ; i--)
sum_B[i] = (sum_B[i + ] + val[i]) % k; for(int i = ; i <= n; i++)
{
A[sum[i]].push_back(i);
B[sum_B[i]].push_back(i);
}
} int Get(int l, int r)
{
int res = sum[r] - sum[l - ];
if(res < ) res += k;
return res;
}
int Find(int R, int val)
{
if(A[val].size() == ) return ;
int l = , r = A[val].size() - ;
while(l < r - )
{
int mid = l + r >> ;
if(A[val][mid] > R) r = mid;
else l = mid;
}
if(A[val][l] > R) return l;
if(A[val][r] > R) return r;
return A[val].size();
}
int Query_left(int L, int R, int val) //sum [L,L~R] num of val
{
if(L > R) return ;
int now = sum[L - ]; //[1, L - 1]
int need = (now + val) % k; //1 ~ R the num of presum = need
return Find(R, need) - Find(L - , need);
}
void Deal_left(int l, int mid, int r)
{
int T = val[mid] % k;
for(int i = l; i <= mid - ; i++)
{
int now = Get(i, mid - );
int need = (T - now + k) % k;
Ans += Query_left(mid, r, need);
} Ans += Query_left(mid, r, T) - ;
} int Get_B(int l, int r)
{
int res = sum_B[l] - sum_B[r + ];
if(res < ) res += k;
return res;
}
int Find_B(int R, int val)
{
if(B[val].size() == ) return ;
int l = , r = B[val].size() - ;
while(l < r - )
{
int mid = l + r >> ;
if(B[val][mid] > R) r = mid;
else l = mid;
}
if(B[val][l] > R) return l;
if(B[val][r] > R) return r;
return B[val].size();
}
int Query_right(int L, int R, int val)
{
if(L > R) return ;
int now = sum_B[R + ];
int need = (now + val) % k;
return Find_B(R, need) - Find_B(L - , need);
}
void Deal_right(int l, int mid, int r)
{
int T = val[mid] % k;
for(int i = mid + ; i <= r; i++)
{
int now = Get_B(mid + , i);
int need = (T - now + k) % k;
Ans += Query_right(l, mid, need);
}
Ans += Query_right(l, mid, T) - ;
} int main()
{
n = get(); k = get();
for(int i = ; i <= n; i++)
val[i] = get(); Deal_first(); for(int i = ; i <= n; i++)
{
if(i - pre[i] + <= suc[i] - i + )
Deal_left(pre[i], i, suc[i]);
else
Deal_right(pre[i], i, suc[i]);
} printf("%lld", Ans);
}
【Codeforces549F】Yura and Developers [单调栈][二分]的更多相关文章
- Looksery Cup 2015 F - Yura and Developers 单调栈+启发式合并
F - Yura and Developers 第一次知道单调栈搞出来的区间也能启发式合并... 你把它想想成一个树的形式, 可以发现确实可以启发式合并. #include<bits/stdc+ ...
- BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 8748 Solved: 3835[Submi ...
- bzoj 4709 [Jsoi2011]柠檬——单调栈二分处理决策单调性
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 题解:https://blog.csdn.net/neither_nor/articl ...
- BZOJ1012最大数 [JSOI2008] 单调栈+二分
正解:单调栈+二分查找(or,线段树? 解题报告: 拿的洛谷的链接quq 今天尝试学习了下单调栈,然后就看到有个博客安利了这个经典例题?于是就去做了,感觉还是帮助了理解趴quqqqqq 这题,首先,一 ...
- 51NOD 1962 区间计数 单调栈+二分 / 线段树+扫描线
区间计数 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 80 两个数列 {An} , {Bn} ,请求出Ans, Ans定义如下: Ans:=Σni=1Σnj=i[max{ ...
- 【bzoj4237】稻草人 分治+单调栈+二分
题目描述 JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田地.和启示中的一样,田地需要满足以下条件: ...
- 洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找)
洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1333275 这个题不是很 ...
- 【洛谷P1823】音乐会的等待 单调栈+二分
题目大意:给定一个长度为 N 的序列,定义两个数 \(a[i],a[j]\) 相互看得见,意味着 \(\forall k\in [i+1,j-1],a[k]\le a[i],a[k]\le a[j]\ ...
- spoj MINSUB 单调栈+二分
题目链接:点击传送 MINSUB - Largest Submatrix no tags You are given an matrix M (consisting of nonnegative i ...
随机推荐
- BluetoothServerSocket详解
一. BluetoorhServerSocket简介 1. 继承关系 public final class BluetoothServerSocket extends Object implement ...
- 第八次作业——项目UML设计
分工及贡献分评定 成员 参与 贡献比例 朱跃安(031602348) 类图 13% 后敬甲(031602409) 实体关系图+博客整理 14.5% 林志华(031602128) 用例图+活动图 14. ...
- UVALive - 6886 Golf Bot 多项式乘法(FFT)
题目链接: http://acm.hust.edu.cn/vjudge/problem/129724 Golf Bot Time Limit: 15000MS 题意 给你n个数,m个查询,对于每个查询 ...
- JDK中的泛型
Java中的泛型介绍: 起因: 1. JDK 1.4 以前类型不明确: ① 装入集合的对象被当作 Object 类型对待,从而失去了自己的原有类型: ② 从集合中取出时往往需要转型,效率低下,并且容易 ...
- button type=“submit”
写js遇到任何怪异的行为 一定要先看看是不是submit搞的鬼. 函数内部最后总是返回 return false; 也是一个好的习惯
- web前端之路 - 开篇
一 web发展历程 了解事物的历史有助于我们渐进式的从发展的思路清楚了解事物的来龙去脉. 这里有一篇网文写得比较清晰和完整:https://www.tianmaying.com/tutorial/we ...
- 从大量的IP访问记录中找到访问次数最多的IP
1.内存不受限 一个IP有32bit(4Byte),1GB=10亿,那么在4GB内存的情况下,可以存10亿个IP.用HashMap,边存入IP边维护一个最大次数,这样遍历一遍就可以求出,时间复杂度为O ...
- React & `event.persist()`
React & event.persist() event.persist() https://reactjs.org/docs/events.html#event-pooling Tabs ...
- js alert()后进行跳转的方法
如果alert()之后再进行跳转本页,按以下方法你将等不到alert(),浏览器就本身刷新本页面了 <script type="text/javascript"> al ...
- 【.Net】C# 反编译工具之dnSpy
下载地址:https://github.com/0xd4d/dnSpy/releases无需安装,和 ILSPY同门,感觉比ILSPY还强大 直接把dll拖拽到程序集资源管理器里面就可以啦