Pandas迭代
Pandas
对象之间的基本迭代的行为取决于类型。当迭代一个系列时,它被视为数组式,基本迭代产生这些值。其他数据结构,如:DataFrame
和Panel
,遵循类似惯例迭代对象的键。
简而言之,基本迭代(对于i
在对象中)产生 -
- Series - 值
- DataFrame - 列标签
- Pannel - 项目标签
迭代DataFrame
迭代DataFrame
提供列名。现在来看看下面的例子来理解这个概念。
import pandas as pd
import numpy as np
N=20
df = pd.DataFrame({
'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
'x': np.linspace(0,stop=N-1,num=N),
'y': np.random.rand(N),
'C': np.random.choice(['Low','Medium','High'],N).tolist(),
'D': np.random.normal(100, 10, size=(N)).tolist()
})
for col in df:
print (col)
执行上面示例代码,得到以下结果 -
A
C
D
x
y
要遍历数据帧(DataFrame)中的行,可以使用以下函数 -
iteritems()
- 迭代(key,value)
对iterrows()
- 将行迭代为(索引,系列)对itertuples()
- 以namedtuples
的形式迭代行
iteritems()示例
将每个列作为键,将值与值作为键和列值迭代为Series对象。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4,3),columns=['col1','col2','col3'])
for key,value in df.iteritems():
print (key,value)
执行上面示例代码,得到以下结果 -
col1 0 0.802390
1 0.324060
2 0.256811
3 0.839186
Name: col1, dtype: float64
col2 0 1.624313
1 -1.033582
2 1.796663
3 1.856277
Name: col2, dtype: float64
col3 0 -0.022142
1 -0.230820
2 1.160691
3 -0.830279
Name: col3, dtype: float64
观察一下,单独迭代每个列作为系列中的键值对。
iterrows()示例
iterrows()
返回迭代器,产生每个索引值以及包含每行数据的序列。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3'])
for row_index,row in df.iterrows():
print (row_index,row)
执行上面示例代码,得到以下结果 -
0 col1 1.529759
col2 0.762811
col3 -0.634691
Name: 0, dtype: float64
1 col1 -0.944087
col2 1.420919
col3 -0.507895
Name: 1, dtype: float64
2 col1 -0.077287
col2 -0.858556
col3 -0.663385
Name: 2, dtype: float64
3 col1 -1.638578
col2 0.059866
col3 0.493482
Name: 3, dtype: float64
注意 - 由于
iterrows()
遍历行,因此不会跨该行保留数据类型。0
,1
,2
是行索引,col1
,col2
,col3
是列索引。
itertuples()示例
itertuples()
方法将为DataFrame
中的每一行返回一个产生一个命名元组的迭代器。元组的第一个元素将是行的相应索引值,而剩余的值是行值。
示例
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3'])
for row in df.itertuples():
print (row)
执行上面示例代码,得到以下结果 -
Pandas(Index=0, col1=1.5297586201375899, col2=0.76281127433814944, col3=-
0.6346908238310438)
Pandas(Index=1, col1=-0.94408735763808649, col2=1.4209186418359423, col3=-
0.50789517967096232)
Pandas(Index=2, col1=-0.07728664756791935, col2=-0.85855574139699076, col3=-
0.6633852507207626)
Pandas(Index=3, col1=0.65734942534106289, col2=-0.95057710432604969,
col3=0.80344487462316527)
注意 - 不要尝试在迭代时修改任何对象。迭代是用于读取,迭代器返回原始对象(视图)的副本,因此更改将不会反映在原始对象上。
示例代码
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3'])
for index, row in df.iterrows():
row['a'] = 10
print (df)
执行上面示例代码,得到以下结果 -
col1 col2 col3
0 -1.739815 0.735595 -0.295589
1 0.635485 0.106803 1.527922
2 -0.939064 0.547095 0.038585
3 -1.016509 -0.116580 -0.523158
注意观察结果,修改变化并未反映出来。
Pandas迭代的更多相关文章
- Pandas学习笔记(三)
(1)系列对象( Series)基本功能 编号 属性或方法 描述 1 axes 返回行轴标签列表. 2 dtype 返回对象的数据类型(dtype). 3 empty 如果系列为空,则返回True. ...
- Pandas教程目录
Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- 如何迭代pandas dataframe的行
from:https://blog.csdn.net/tanzuozhev/article/details/76713387 How to iterate over rows in a DataFra ...
- Pandas | 09 迭代
Pandas对象之间的基本迭代的行为取决于类型.当迭代一个系列时,它被视为数组式,基本迭代产生这些值.其他数据结构,如:DataFrame和Panel,遵循类似惯例,迭代对象的键. 简而言之,基本迭代 ...
- pandas:数据迭代、函数应用
1.数据迭代 1.1 迭代行 (1)df.iterrows() for index, row in df[0:5].iterrows(): #需要两个变量承接数据 print(row) print(& ...
- pandas 读取excle ,迭代
# -*-coding:utf-8 -*- import pandas as pd xls_file=pd.ExcelFile('D:\python_pro\\address_list.xlsx') ...
- 如何快速地从mongo中提取数据到numpy以及pandas中去
mongo数据通常过于庞大,很难一下子放进内存里进行分析,如果直接在python里使用字典来存贮每一个文档,使用list来存储数据的话,将很快是内存沾满.型号拥有numpy和pandas import ...
- pandas处理数据1
读文件 pd.read_csv('path/to/file.txt',header=0,names='ab',index_col=0) names Columns这个可以不写,制定索引列是第一列,这样 ...
随机推荐
- (转)HTTP
HTTP(Hyper Text Transfer Protocol)超文本传输协,是一个应用层协议,由请求和响应构成,是一个标准的客户端服务器模型. HTTP特点: 支持客户 / 服务器模式 简单快速 ...
- ChannelOption用到的socket的标准参数
ChannelOption.SO_BACKLOG, 1024 BACKLOG用于构造服务端套接字ServerSocket对象,标识当服务器请求处理线程全满时,用于临时存放已完成三次握手的请求的队列的最 ...
- Oracle 的安全保障 commit &checkpoint
Oracle 的安全 commit &checkpoint commit ---lgwr 事务相关的操作,保证事务的安全. commit标志着事务的结束.意味着别人对你事务操作的结果可见. c ...
- angular.js记录
http://www.runoob.com/angularjs/angularjs-tutorial.html 第一部分:快速上手1.1 angularJS四大核心特性1.2 自己动手搭建开发,调试, ...
- macro-name replacement-text 宏 调试开关可以使用一个宏来实现
C++ 预处理器_w3cschool https://www.w3cschool.cn/cpp/cpp-preprocessor.html C++ 预处理器 预处理器是一些指令,指示编译器在实际编译之 ...
- SOE 中调用第三方dll
一.简介 在利用soe实现server的扩展的时候,有些时候,需要调用第三方的dll库.官网中给出了明确的说明,soe中是可以添加第三方的dll文件,但是一直没有测试.按照官方的步骤应该是一个非常的简 ...
- SEO优化 给a标签添加rel="nofollow"
为什么要使用nofollow标签? 我们使用nofollow标签的目的是很明确的,就是减少蜘蛛对页面上垃圾链接的爬行和传递权重,或者减少蜘蛛对页面上“无用”链接的爬行和传递链接权重. 这里所说的无用是 ...
- [转载]Css设置table网格线(无重复)
原文地址:Css设置table网格线(无重复)作者:依然贰零零柒 效果图: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0Transition ...
- CentOS7.1 KVM虚拟化之linux虚拟机安装(2)
一.上传ISO文件到/data/iso下 这里使用CentOS-5.5-i386-bin-DVD.iso 二.安装CentOS5.5 CentOS7.1 安装KVM虚拟机默认磁盘格式为qcow2(推荐 ...
- Lua(1)
1.the use of functions in table fields is a key ingredient for some advanced uses of Lua, such as mo ...