BZOJ1010:[HNOI2008]玩具装箱——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1010
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
还是简单的设f[i]为前i个玩具的装箱方案最小费用,显然有:
f[i]=min{f[j]+(j-i-1+sum[i]-sum[j]-L)^2}
其中sum为c的前缀和。
将平方里面的数按照和i/和j分类,于是设a[i]=sum[i]+i-L-1,b[i]=sum[i]+i,得到:
f[i]=min{f[j]+(a[i]-b[j])^2}
展开得到:
f[i]=min{f[j]+a[i]^2+b[j]^2-2*a[i]b[j]}
当k<j<i时,如果f[k]+b[k]^2-2*a[i]b[k]>f[j]+b[j]^2-2*a[i]b[j]则把k踢出。
化成:(f[j]-f[k]+b[j]^2-b[k]^2)/(2*(b[j]-b[k]))<a[i],显然可以斜率优化了。
至于剩下的套路部分就请看土地购买这道题的解法吧。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll INF=1e18;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+ch-'',ch=getchar();
return X*w;
}
int n,l,r;
ll f[N],q[N],sum[N],a[N],b[N],L;
inline double suan(int k,int j){
return 0.5*(f[j]-f[k]+b[j]*b[j]-b[k]*b[k])/(b[j]-b[k]);
}
int main(){
n=read(),L=read();
for(int i=;i<=n;i++){
sum[i]=sum[i-]+read();
a[i]=sum[i]+i-L-;
b[i]=sum[i]+i;
}
for(int i=;i<=n;i++){
while(l<r&&suan(q[l],q[l+])<(double)a[i])l++;
f[i]=f[q[l]]+(a[i]-b[q[l]])*(a[i]-b[q[l]]);
while(l<r&&suan(q[r],i)<suan(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ1010:[HNOI2008]玩具装箱——题解的更多相关文章
- bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)
1010: [HNOI2008]玩具装箱toy 题目:传送门 题解: 很明显的一题动态规划... f[i]表示1~i的最小花费 那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-su ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp
玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
- 题解【bzoj1010 [HNOI2008]玩具装箱TOY】
斜率优化动态规划可以用来解决这道题.同时这也是一道经典的斜率优化基础题. 分析:明显是动态规划.令\(dp[i]\)为前\(i\)个装箱的最小花费. 转移方程如下: \[dp[i]=\min\limi ...
- BZOJ1010 [HNOI2008]玩具装箱toy
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...
- [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...
- [BZOJ1010][HNOI2008]玩具装箱toy 解题报告
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
随机推荐
- 机器学习的5种“兵法"
大数据文摘作品,欢迎个人转发朋友圈,自媒体.媒体.机构转载务必申请授权,后台留言“机构名称+转载”,申请过授权的不必再次申请,只要按约定转载即可. 作者:Jason Brownlee 译者:Clair ...
- Appium Inspector定位元素与录制简单脚本
本次以微信为例, 使用Appium自带的Inspector定位工具定位元素, 以及进行最最最简单脚本的录制: capabilities = { "platformName": &q ...
- Python简要标准库(2)
集合 堆 和 双端队列 1.集合 创建集合 s = set(range(10)) 和字典一样,集合元素的顺序是随意的,因此不能以元素的顺序作为依据编程 集合支持的运算 a = set([1,2,3]) ...
- Spring 配置String转Date
操作步骤: 1. 实现 org.springframework.core.convert.converter.Converter 接口 2. 配置 org.springframework.contex ...
- JVM--Java类加载机制
一.什么是类的加载 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其存放在运行时数据区的方法区内,然后在java堆区创建一个java.lang.Class对象,用来封装类在方法区内 ...
- 概要梳理kafka知识点
主要是梳理一下kafka学习中的一些注意点,按照消息的流动方向进行梳理.详细的kafka介绍推荐看骑着龙的羊的系列博客,具体的某一块的知识点,可以参考我给出的一些参考文章. 1. kafka在系统中的 ...
- WCF:REST + Basic authentification + IIS
近期一个项目中用到Restful WCF提供服务,但是需要验证机制,网上搜刮了一些,都是太复杂.FQ找到了一篇不错的文章分享一下. 原地址连接:http://vgolovchenko.wordpres ...
- HDFS essay 2 - Clarify Name Node / Checkpoint Node/ Backup Node
为什么想用英文写了?我获取知识.技术的大部分途径都是通过英文,所以按照自己的理解用英文写下来也比较容易,另外,很多term都是不能翻译的,如果要持续学习技术和知识,那就不但要习惯去阅读,听,还要写,说 ...
- 基于freeRTOS定时器实现闹钟(定时)任务
基于freeRTOS定时器实现闹钟(定时)任务 在智能硬件产品中硬件中,闹钟定时任务是基本的需求.一般通过APP设置定时任务,从云端或者是APP直连硬件将闹钟任务保存在硬件flash中,硬件运行时会去 ...
- nodejs笔记--基础篇(一)
Sublime Node.js开发环境配置 下载并安装Node.js安装包后再开始配置 1.先安装好Sublime Text 2 2.运行Sublime,菜单上找到Tools ---> Buil ...