http://www.lydsy.com/JudgeOnline/problem.php?id=1010

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

还是简单的设f[i]为前i个玩具的装箱方案最小费用,显然有:

f[i]=min{f[j]+(j-i-1+sum[i]-sum[j]-L)^2}

其中sum为c的前缀和。

将平方里面的数按照和i/和j分类,于是设a[i]=sum[i]+i-L-1,b[i]=sum[i]+i,得到:

f[i]=min{f[j]+(a[i]-b[j])^2}

展开得到:

f[i]=min{f[j]+a[i]^2+b[j]^2-2*a[i]b[j]}

当k<j<i时,如果f[k]+b[k]^2-2*a[i]b[k]>f[j]+b[j]^2-2*a[i]b[j]则把k踢出。

化成:(f[j]-f[k]+b[j]^2-b[k]^2)/(2*(b[j]-b[k]))<a[i],显然可以斜率优化了。

至于剩下的套路部分就请看土地购买这道题的解法吧。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll INF=1e18;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+ch-'',ch=getchar();
return X*w;
}
int n,l,r;
ll f[N],q[N],sum[N],a[N],b[N],L;
inline double suan(int k,int j){
return 0.5*(f[j]-f[k]+b[j]*b[j]-b[k]*b[k])/(b[j]-b[k]);
}
int main(){
n=read(),L=read();
for(int i=;i<=n;i++){
sum[i]=sum[i-]+read();
a[i]=sum[i]+i-L-;
b[i]=sum[i]+i;
}
for(int i=;i<=n;i++){
while(l<r&&suan(q[l],q[l+])<(double)a[i])l++;
f[i]=f[q[l]]+(a[i]-b[q[l]])*(a[i]-b[q[l]]);
while(l<r&&suan(q[r],i)<suan(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1010:[HNOI2008]玩具装箱——题解的更多相关文章

  1. bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    1010: [HNOI2008]玩具装箱toy 题目:传送门 题解: 很明显的一题动态规划... f[i]表示1~i的最小花费 那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-su ...

  2. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  3. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  4. 题解【bzoj1010 [HNOI2008]玩具装箱TOY】

    斜率优化动态规划可以用来解决这道题.同时这也是一道经典的斜率优化基础题. 分析:明显是动态规划.令\(dp[i]\)为前\(i\)个装箱的最小花费. 转移方程如下: \[dp[i]=\min\limi ...

  5. BZOJ1010 [HNOI2008]玩具装箱toy

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  6. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  7. BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...

  8. [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  9. [BZOJ1010][HNOI2008]玩具装箱toy 解题报告

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

随机推荐

  1. define的误用

    #define LIGHT_SPEED 3e8 // m/sec (in a vacuum)

  2. js函数相关高级用法

    一.惰性载入函数(lazy function) 使用场景:当一个函数中的判断分支只用执行一次(第一次调用时执行),后续不会再变化,则可以使用惰性函数来提高性能. var addEvent = func ...

  3. tpo-09 C1 Advice on a term paper's topic

    第 1 段 1.Listen to a conversation between a student and her professor. 请听一段一名学生和教授讨论的对话. 第 2 段 1.Befo ...

  4. 关于html2canvas清晰度

    最近有个小项目 需要生成海报让用户去分享~~~vue做的,海报通过html2canvas 生成. 遇到的最大问题是生成图片的清晰度~~网上找了好多方法. 放大倍数!~网上找的~~ var cntEle ...

  5. [Clr via C#读书笔记]Cp11事件

    Cp11事件 类型之所以提供事件通知功能,是因为类型维护了一个已登记方法的列表,事件发生后,类型将通知列表登记的所有方法: 事件模型建立在委托的基础上.委托是调用回调方法的一种类型安全的方式. 设计事 ...

  6. 并行程序模拟(Concurrency Simulator, ACM/ICPC World Finals 1991,Uva210)

    任务介绍 你的任务是模拟n个程序的并行运算.(按照输入编号为1~n)的并行执行. 代码实现 #define LOCAL #include<bits/stdc++.h> using name ...

  7. vim常用命令—撤销与反撤销

    命令模式下(即按ESC后的模式) u 撤销 Ctrl r (组合键) 反撤销<后悔撤销>

  8. Ext JS 6学习文档-第6章-高级组件

    Ext JS 6学习文档-第6章-高级组件 高级组件 本章涵盖了高级组件,比如 tree 和 data view.它将为读者呈现一个示例项目为 图片浏览器,它使用 tree 和 data view 组 ...

  9. 八:The YARN Timeline Server

    一.Overview 介绍     yarn timeline server用于存储和检查应用程序过去和现在的信息(比如job history server).有两个功能: 1.Persisting ...

  10. Python3 数据类型-字典

    字典是一种可变数据类型,且可存储任意类型对象. 字典使用大括号"{}"括起来,由键(key)和值(values)组成,键只能使用不可变类型定义,值可以使用可变类型{'键':'值'} ...