http://www.lydsy.com/JudgeOnline/problem.php?id=1010

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

还是简单的设f[i]为前i个玩具的装箱方案最小费用,显然有:

f[i]=min{f[j]+(j-i-1+sum[i]-sum[j]-L)^2}

其中sum为c的前缀和。

将平方里面的数按照和i/和j分类,于是设a[i]=sum[i]+i-L-1,b[i]=sum[i]+i,得到:

f[i]=min{f[j]+(a[i]-b[j])^2}

展开得到:

f[i]=min{f[j]+a[i]^2+b[j]^2-2*a[i]b[j]}

当k<j<i时,如果f[k]+b[k]^2-2*a[i]b[k]>f[j]+b[j]^2-2*a[i]b[j]则把k踢出。

化成:(f[j]-f[k]+b[j]^2-b[k]^2)/(2*(b[j]-b[k]))<a[i],显然可以斜率优化了。

至于剩下的套路部分就请看土地购买这道题的解法吧。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll INF=1e18;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+ch-'',ch=getchar();
return X*w;
}
int n,l,r;
ll f[N],q[N],sum[N],a[N],b[N],L;
inline double suan(int k,int j){
return 0.5*(f[j]-f[k]+b[j]*b[j]-b[k]*b[k])/(b[j]-b[k]);
}
int main(){
n=read(),L=read();
for(int i=;i<=n;i++){
sum[i]=sum[i-]+read();
a[i]=sum[i]+i-L-;
b[i]=sum[i]+i;
}
for(int i=;i<=n;i++){
while(l<r&&suan(q[l],q[l+])<(double)a[i])l++;
f[i]=f[q[l]]+(a[i]-b[q[l]])*(a[i]-b[q[l]]);
while(l<r&&suan(q[r],i)<suan(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1010:[HNOI2008]玩具装箱——题解的更多相关文章

  1. bzoj1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    1010: [HNOI2008]玩具装箱toy 题目:传送门 题解: 很明显的一题动态规划... f[i]表示1~i的最小花费 那么方程也是显而易见的:f[i]=min(f[j]+(sum[i]-su ...

  2. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  3. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  4. 题解【bzoj1010 [HNOI2008]玩具装箱TOY】

    斜率优化动态规划可以用来解决这道题.同时这也是一道经典的斜率优化基础题. 分析:明显是动态规划.令\(dp[i]\)为前\(i\)个装箱的最小花费. 转移方程如下: \[dp[i]=\min\limi ...

  5. BZOJ1010 [HNOI2008]玩具装箱toy

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  6. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  7. BZOJ1010 [HNOI2008]玩具装箱toy 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8687797.html 题目传送门 - BZOJ1010 题意 一个数列$C$,然后把这个数列划分成若干段. 对于 ...

  8. [bzoj1010](HNOI2008)玩具装箱toy(动态规划+斜率优化+单调队列)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  9. [BZOJ1010][HNOI2008]玩具装箱toy 解题报告

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

随机推荐

  1. 「日常训练」湫湫系列故事——设计风景线(HDU-4514)

    题意与分析 中文题目,木得题意的讲解谢谢. 然后还是分解成两个任务:a)判环,b)找最长边. 对于这样一个无向图,强行转换成负权然后bellman-ford算法求最短是难以实现的,所以感谢没有环--我 ...

  2. SQL Sever查询语句集锦

    一. 简单查询简单的Transact-SQL查询只包括选择列表.FROM子句和WHERE子句.它们分别说明所查询列.查询的表或视图.以及搜索条件等. 例如,下面的语句查询testtable表中姓名为“ ...

  3. 了解Python控制流语句——if语句

    控制流 截止到现在,在我们所看过的程序中,总是有一系列语句从上到下精确排列,并交由 Python 忠实地执行.如果你想改变这一工作流程,应该怎么做?就像这样的情况:你需要程序作出一些决定,并依据不同的 ...

  4. spring入门(Ioc的理解)

    spring对依赖的注入理解可以参考这篇:https://www.cnblogs.com/alltime/p/6729295.html 依赖注入和控制反转 传统的JavaEE程序中,直接在内部new一 ...

  5. kubernetes相关

    1.获取client , api-server 加token 或in-cluster方式 2.所有对象均有list update get 等方法 3.对象属性源码追踪,yaml与源码一一对应 4.一些 ...

  6. node.js应用--转载

    最近,在向大学生们介绍 HTML5 的时候,我想要对他们进行问卷调查,并向他们显示实时更新的投票结果.鉴于此目的,我决定快速构建一个用于此目的的问卷调查应用程序.我想要一个简单的架构,不需要太多不同的 ...

  7. 1.编译azkaban

    1.下载azkaban的源码 https://github.com/azkaban/azkaban.git 然后解压得到azkaban-master.zip,解压:unzip azkaban-mast ...

  8. C中的除法,商和余数的大小、符号如何确定

    对于C中的除法,商和余数的大小.符号是如何确定的呢?在C89中,只规定了如果两个数为正整数,那么余数的符号为正,并且商的值是接近真实值的最大整数.比如5 / 2,那么商就是2,余数就是1.但是,C89 ...

  9. 互评Alpha版本——Thunder团队

    基于NABCD评论作品 Hello World! :http://www.cnblogs.com/120626fj/p/7807544.html 欢迎来怼 :http://www.cnblogs.co ...

  10. Daily Scrum 11

    今天我们小组开会内容分为以下部分: part 1: 针对学长的搜索算法进行优化,每人发表自己的看法; part 2:对积分系统.防滥用.搜索算法优化部分代码任务的讨论和分工: part 3:进行明日的 ...