求点1到点n经过的路径权值异或和的期望。

考虑按位计算,对于每一位来说,令dp[i]表示从i到n的异或和期望值。

那么dp[i]=sum(dp[j]+1-dp[k]).如果w(i,j)这一位为0,如果w(i,k)这一位为1.边界为dp[n][n]=0.

那么求解每个方程组就得到了每一位的贡献。另外注意自环的出理就ok了。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{int p, next, w;}edge[];
int head[N], cnt=, dee[N];
double a[N][N], x[N];
int equ, var; void add_edge(int u, int v, int w){
edge[cnt].p=v; edge[cnt].next=head[u]; edge[cnt].w=w; head[u]=cnt++;
}
int Guass(){
int i, j, k, col, max_r;
for (k=, col=; k<equ&&col<var; ++k, ++col){
max_r=k;
FO(i,k+,equ) if (fabs(a[i][col])>fabs(a[max_r][col])) max_r=i;
if (fabs(a[max_r][col])<eps) return ;
if (k!=max_r) {FO(j,col,var) swap(a[k][j],a[max_r][j]); swap(x[k],x[max_r]);}
x[k]/=a[k][col];
FO(j,col+,var) a[k][j]/=a[k][col];
a[k][col]=;
FO(i,,equ) if (i!=k) {
x[i]-=x[k]*a[i][col];
FO(j,col+,var) a[i][j]-=a[k][j]*a[i][col];
a[i][col]=;
}
}
return ;
}
int main ()
{
int n, m, u, v, w;
double ans=;
scanf("%d%d",&n,&m);
equ=var=n;
while (m--) {
scanf("%d%d%d",&u,&v,&w);
--u; --v;
if (u!=v) add_edge(u,v,w), add_edge(v,u,w), ++dee[v];
else add_edge(u,v,w);
++dee[u];
}
FO(i,,) {
mem(a,); mem(x,);
FO(j,,n-) {
a[j][j]=dee[j];
for (int k=head[j]; k; k=edge[k].next) {
v=edge[k].p; w=edge[k].w;
if (w&(<<i)) {a[j][v]+=; x[j]+=;}
else a[j][v]-=;
}
}
a[n-][n-]=;
Guass();
ans+=(x[]*(<<i));
}
printf("%.3f\n",ans);
return ;
}

BZOJ 2337 XOR和路径(概率DP)的更多相关文章

  1. BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算

    BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...

  2. BZOJ 2337 XOR和路径(高斯消元)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2337 题意:给定一个带权无向图.从1号点走到n号点.每次从当前点随机(等概率)选择一条相 ...

  3. bzoj 2337 高斯消元+概率DP

    题目大意: 每条路径上有一个距离值,从1走到N可以得到一个所有经过路径的异或和,求这个异或和的数学期望 这道题直接去求数学期望的DP会导致很难列出多元方程组 我们可以考虑每一个二进制位从1走到N的平均 ...

  4. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  5. BZOJ 3143 [Hnoi2013]游走 ——概率DP

    概率DP+高斯消元 与博物馆一题不同的是,最终的状态是有一定的概率到达的,但是由于不能从最终状态中出来,所以最后要把最终状态的概率置为0. 一条边$(x,y)$经过的概率是x点的概率$*x$到$y$的 ...

  6. BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP

    首先可以各位分开求和 定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移. 然后高斯消元31次就可以了. #inc ...

  7. BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)

    题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...

  8. BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]

    3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...

  9. BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

随机推荐

  1. MongoDB入门---文档查询操作之条件查询&and查询&or查询

    经过前几天的学习之路,今天终于到了重头戏了.那就是文档查询操作.话不多说哈,直接看下语法: db.collection.find(query, projection) query :可选,使用查询操作 ...

  2. tutorials

    https://github.com/HadrienG/tutorials https://github.com/galaxyproject/training-material/blob/master ...

  3. OpenCV 3.0.0处理鱼眼镜头信息 - Fisheye camera model

    此篇随笔主要参考OpenCV 3.0.0的官方文档翻译而来,主要用作理解OpenCV对鱼眼相机的标定.图像校正.3D重建功能的理解. 版权所有,转载请注明出处~ xzrch@2018.09.29 参考 ...

  4. hdu1171Big Event in HDU(01背包)

    Big Event in HDU Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  5. DeepLearning Intro - sigmoid and shallow NN

    This is a series of Machine Learning summary note. I will combine the deep learning book with the de ...

  6. 【机器学习】多项式回归python实现

    [机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用python实现多项式回归,没有使用sklearn等机器学习框架,目的是帮助理解算 ...

  7. [leetcode-779-K-th Symbol in Grammar]

    On the first row, we write a 0. Now in every subsequent row, we look at the previous row and replace ...

  8. HTMLTestRunner解决UnicodeDecodeError: ‘ascii’ codec can’t decode byte 0xe5 in position 108: ordinal not in range(128)

    其中HTML和数据库都是设置成utf-8格式编码,插入到数据库中是正确的,但是当读取出来的时候就会出错,原因就是python的str默认是ascii编码,和unicode编码冲突,就会报这个标题错误. ...

  9. 使用HTML5制作loading图

    昨天发了一篇使用HTML5 canvas写的时钟的文章,今天发一篇关于使用HTML5制作loading图的文章. <!DOCTYPE html> <html> <head ...

  10. 蓝牙核心技术概述(四):蓝牙协议规范(HCI、L2CAP、SDP、RFOCMM)(转载)

    一.主机控制接口协议  HCI 蓝牙主机-主机控模型 蓝牙软件协议栈堆的数据传输过程: 1.蓝牙控制器接口数据分组:指令分组.事件分组.数据分组(1).指令分组 如:Accpet Connection ...