HDOJ(HDU).1003 Max Sum (DP)

点我挑战题目

算法学习—–动态规划初探

题意分析

给出一段数字序列,求出最大连续子段和。典型的动态规划问题。

用数组a表示存储的数字序列,sum表示当前子段和,maxsum表示最大子段和。不妨设想:当sum为负数的时候:

1.当下一个数字a[i]为正数的时候,sum+a[i] < a[i],不如将sum归零重新计算

2.当下一个数字为负数的时候,sum+a[i]< 0 ,若再下一个数字还为负数,依旧可以得出和小于零……直到遇到一个正数,此时回到1的情况,不如将sum归零计算。

综上所述,当sum为负数的时候,归零

那么再看sum为正数的时候:

1.当下一个数字a[i]为正数的时候,当然选择加上a[i],并且可以更新maxsunm;

2.当下一个数字a[i]为负数的时候,由于不知道后面数字的情况,无法做出决策。

综上所述,当sum>maxsum的时候,要更新maxsum,并且一直累加a[i]

题目还要求输出这个子段的start位置和end位置。可以用x,y分别表示当前最优(大)的子段的开始和结束位置,然后再用sta和ed变量表示当前子段的开始和结束位置。结合上面的叙述:

1.当sum>maxsum的时候,即需要更新的时候,就要更新x和y的位置;

2.当sum< 0的时候,即需要使sum归零计算的时候,就需要把sta的位置置为i+1(指向下一个位置的数字);

以上分析过程就是DP的过程,不难设计出程序。

代码总览

/*
Title:HDOJ.1003
Author:pengwill
Date:2017-2-15
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define nmax 100005
using namespace std;
int a[nmax];
int main()
{
int t;
scanf("%d",&t);
for(int i = 1; i<= t; ++i){
if(i!=1) printf("\n");
printf("Case %d:\n",i);
int n,maxsum = 0,sum = 0,x =1, y=1,sta = 1, ed = 1;
scanf("%d",&n);
for(int i = 1;i <=n; ++i) scanf("%d",&a[i]);
maxsum = -1001;//2.将maxsum初始为-1001
sum = 0;
for(int i =1; i<=n; ++i){
sum+=a[i];ed = i;
if(sum>maxsum){//1.注意此处2个if的位置不能颠倒
maxsum = sum;
x = sta; y = i;
}
if(sum <0){
sta = i+1;
sum = 0;
}
}
printf("%d %d %d\n",maxsum,x,y);
}
return 0;
}

结合代码中的注释:

1.2个if不能颠倒:代码中第二if是指,若sum< 0则舍弃重新计算。但是我们考虑全为负数的情况,如:5 -1 -2 -3 -4 -5 -5,明显这组数据的maxsum应该是-1,若将第二个if放到前面,则无法更新maxsum。

2.将maxsum置为-1001也是考虑数据全为负数的情况,因为题目中还说到数字最小是-1000。

HDOJ(HDU).1003 Max Sum (DP)的更多相关文章

  1. hdu 1003 Max Sum (DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)   ...

  2. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  3. hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行

    测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...

  4. hdu 1003 Max sum(简单DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem ...

  5. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  6. HDU 1003 Max Sum(DP)

    点我看题目 题意 : 就是让你从一个数列中找连续的数字要求他们的和最大. 思路 : 往前加然后再判断一下就行. #include <iostream> #include<stdio. ...

  7. hdu 1003 Max Sum(基础dp)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  8. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. HDU 1003 Max Sum (动规)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

随机推荐

  1. Qt-QML-C++交互实现文件IO系统

    QMl是没有自己的文件IO控制的,这里如果我们需要对文件进行读写操作,那么就需要去C++或者JS完成交互,交互方式有多种,由于我还没有掌握,这里就不介绍具体的交互方式了.这里就简单说明一下我的实现过程 ...

  2. MySQL☞关联查询

    关联查询:所需要的数据来源于多张表,通过表的连接查询(关联查询)来查询多张表中的数据 格式: select 别名1 . */列名 , 别名2 . */列名 from 表名1  别名1 , 表名2  别 ...

  3. Android 简介

    一 Android起源 android: 机器人 android是google公司开发的基于Linux2.6的免费开源操作系统 2005 Google收购 Android Inc. 开始 Dalvik ...

  4. Ubuntu14.04 panic --not syncing: Attempt to kill init 解决方法

    Ubuntu14.04 panic --not syncing: Attempt to kill init 解决方法 工作电脑装了一个虚拟机玩玩,胡乱下载了一些软件,apt-get了不少操作,后来重启 ...

  5. Scala学习笔记之Actor多线程与线程通信的简单例子

    题目:通过子线程读取每个文件,并统计单词数,将单词数返回给主线程相加得出总单词数 package review import scala.actors.{Actor, Future} import s ...

  6. Paper Reading - Convolutional Image Captioning ( CVPR 2018 )

    Link of the Paper: https://arxiv.org/abs/1711.09151 Motivation: LSTM units are complex and inherentl ...

  7. Python的string模块化方法

    Python 2.X中曾经存在过一个string模块,这个模块里面有很多操作字符串的方法,但是在Python 3.X中,这些模块化方法已经被移除了(但是string模块本身没有被移除,因为它还有其他可 ...

  8. Automatic Judge

    Description Welcome to HDU to take part in the second CCPC girls’ competition! A new automatic judge ...

  9. c# 读取xml文件 编写form

    主要思想:xml保存控件的数据,c#读取出来并加以显示. 难点:1.控件有父容器和子控件的关系:2.控件事件的添加. 1.控件有父容器和子控件的关系: 可以用绝对坐标在xml文件中先读取子控件再读取父 ...

  10. C#中委托的发展与匿名函数

    匿名函数(C# 编程指南) 匿名函数是一个“内联”语句或表达式,可在需要委托类型的任何地方使用. 可以使用匿名函数来初始化命名委托,或传递命名委托(而不是命名委托类型)作为方法参数. 共有两种匿名函数 ...