传送门\

Description

某加工厂有\(A\)、\(B\)两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。

你的任务就是:已知每个任务在\(A\)机器上加工所需的时间\(t_1\),\(B\)机器上加工所需的时间\(t_2\)及由两台机器共同加工所需的时间\(t_3\),请你合理安排任务的调度顺序,使完成所有\(n\)个任务的总时间最少。

Input

第\(1\)行为\(n\)。\(n\)是任务总数

第\(i+1\)行为\(3\)个\([0,5]\)之间的非负整数\(t_1,t_2,t_3\),分别表示第\(i\)个任务在\(A\)机器上加工、\(B\)机器上加工、两台机器共同加工所需要的时间。如果所给的时间\(t_1\)或\(t_2\)为\(0\)表示任务不能在该台机器上加工,如果\(t_3\)为\(0\)表示任务不能同时由两台机器加工。

Output

最少完成时间

Sample Input

5
2 1 0
0 5 0
2 4 1
0 0 3
2 1 1

Sample Output

9

Hint

\(1~\leq~n~\leq~6000\)

Solution

看过去这确实是个DP,但是状态难以设计。因为共有两个时间,无法将他们体现到一个最优值上去。但是考虑最大的用时是3e4,所以其中一个用时是可以枚举的,所以可以把用时放到状态中:由此可以设计出状态:

设\(f_{i,j}\)为前i个任务,\(A\)机器花费\(j\)时间的\(B\)最小花费时间。方程显然:

\(f_{i,j}=min\){\(f_{i-1,j-a},f_{i-1,j}+b,f_{i-1,j-c}+c\)}

这样卡一卡常就过了(

Code

#include<cstdio>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[90];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
} template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template<typename T>
inline T mmax(const T a,const T b) {return a>b?a:b;}
template<typename T>
inline T mmin(const T a,const T b) {return a<b?a:b;}
template<typename T>
inline T mabs(const T a) {return a<0?-a:a;} template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
} const int maxn = 6010;
const int maxm = 30010; int frog[maxm]; int main() {
rg int n=0;qr(n);
rg int a,b,c;
for(rg int i=1;i<=n;++i) {
a=b=c=0;qr(a);qr(b);qr(c);
if(!a) a=maxm;if(!b) b=maxm;if(!c) c=maxm;
for(rg int j=30000;~j;--j) {
frog[j]+=b;
if(j >= a) frog[j]=mmin(frog[j],frog[j-a]);
if(j >= c) frog[j]=mmin(frog[j],frog[j-c]+c);
}
}
rg int ans=0x3f3f3f3f;
for(rg int i=0;i<30001;++i) {
ans=mmin(ans,mmax(frog[i],i));
}
write(ans,'\n',true);
return 0;
}

Summary

当一个状态的最优值包括\(n\)个参数时,可以将\(n-1\)个参数放到状态中,每次转移为其他参数为该状态时,剩下参数的最值。最后枚举参数求得答案。

【DP】【P2224】】【HNOI2001】产品加工的更多相关文章

  1. 洛谷 P2224 [HNOI2001]产品加工 解题报告

    P2224 [HNOI2001]产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需 ...

  2. 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]

    题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...

  3. bzoj 1222: [HNOI2001]产品加工 dp

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 381  Solved: 218[Submit][Status ...

  4. 【BZOJ1222】[HNOI2001]产品加工 DP

    [BZOJ1222][HNOI2001]产品加工 Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同 ...

  5. Bzoj 1222: [HNOI2001]产品加工 动态规划

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 486  Solved: 298[Submit][Status ...

  6. BZOJ1222[HNOI2001]产品加工——DP

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  7. 【bzoj1222】[HNOI2001]产品加工 背包dp

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  8. 【BZOJ 1222】 [HNOI2001] 产品加工(DP)

    Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机 ...

  9. BZOJ1222: [HNOI2001]产品加工(诡异背包dp)

    Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 907  Solved: 587[Submit][Status][Discuss] Descriptio ...

  10. bzoj1222: [HNOI2001]产品加工--DP

    DP神题orz dp[i]表示机器1工作i小时,机器2工作dp[i]小时 那么对于每个任务: 选1:dp[i]=dp[i-a]; 选2:dp[i]=dp[i]+b; 选1+2:dp[i]=dp[i-c ...

随机推荐

  1. Linux命令应用大词典-第5章 显示文本和文件内容

    5.1 cat:显示文本文件 5.2 more:分页显示文本文件 5.3 less:回卷显示文本文件 5.4 head:显示指定文件前若干行 5.5 tail:查看文件末尾数据 5.6 nl:显示文件 ...

  2. Redis 数据结构服务器

    Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久 ...

  3. python3 bytes与hex_string之间的转换

    1, bytes to hex_string的转换: def byte_to_hex(bins): """ Convert a byte string to it's h ...

  4. 微信小程序:封装全局的promise异步调用方法

    微信小程序:封装全局的promise异步调用方法 一:封装 function POST(url, params) { let promise = new Promise(function (resol ...

  5. Python中如何Getting Help

    在Python中Gettting Help有如下两种方法: 1 使用dir函数,dir的参数可以是一个真正的对象实例,也可以是一个数据类型,无论哪种情形,dir函数都返回与这个对象或者数据类型相关联的 ...

  6. Pipeline组测试说明

    PIPELINE组测试报告 前言:我们组与学霸系统的其他两个小组共同合作开发,组成学霸系统的团体工作.作为学霸系统的一环,我们组起到承上启下的作用,因此,面向群体以及功能实现都是为给下一个组的工作做好 ...

  7. 百度编辑器ueditor的图片地址修正

    我用的百度编辑器为1.4.2的,相对于现在这个时间来说是比较新的.之前去的1.3版的,后来更新到1.4之后出现路径问题.因为今天晚上出现特别奇怪的问题,所以特地又整了一遍,发现这玩意还是得自己弄通了好 ...

  8. Java中I/O流之处理流类型

    节点流:一个管道直接连接到数据源上面: 处理流:套在别的管道上面的管道: 处理流类型: [注]:在字符流中的OuPutStreamReader写错了,应该是:OutputStreamWriter

  9. iOS- iOS 7 的后台多任务 (Multitasking) 对比之前的异同、具体机制、变化

    简单来说,这玩意是对开发者友好,但对设备不友好的(可能会偷偷摸摸地占用流量和电量).对用户来说,如果你带宽够,对发热不敏感的话,会得到更好的应用体验. 从 iOS 4 开始,应用就可以在退到后台后,继 ...

  10. iOS-【UIDynamic-UIKit动力学】

    如果看不到图片 可以尝试更换浏览器(推荐Safari ) 0.了解 •Dynamic Animator:动画者,为动力学元素提供物理学相关的能力及动画,同时为这些元素提供相关的上下文,是动力学元素与底 ...