Counting Intersections

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1138    Accepted Submission(s): 347

Problem Description
Given some segments which are paralleled to the coordinate axis. You need to count the number of their intersection.
The input data guarantee that no two segments share the same endpoint, no covered segments, and no segments with length 0.
Input
The first line contains an integer T, indicates the number of test case.
The first line of each test case contains a number n(1<=n<=100000), the number of segments. Next n lines, each with for integers, x1, y1, x2, y2, means the two endpoints of a segment. The absolute value of the coordinate is no larger than 1e9.
Output
For each test case, output one line, the number of intersection.
Sample Input
2
4
1 0 1 3
2 0 2 3
0 1 3 1
0 2 3 2
4
0 0 2 0
3 0 3 2
3 3 1 3
0 3 0 2
Sample Output
4
0
Author
BUPT
Source

【分析】给你一些与坐标轴平行的线段,问有多少对线段相交。

对于这种N*N可以办到但是超时的统计问题,一般都树状数组来统计。先将坐标离散化,然后横向线段存两个端点的横坐标,纵向的存一个横   坐标,然后排序,统计。若遇到一条横向线段的左端点,则纵坐标向上lowbit加一,若遇到纵向线段,统计这条线段的累加值,若遇到横向线     段的右端点,纵坐标向上lowbit减一,即删除,因为它已经没有贡献了。

#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define met(a,b) memset(a,b,sizeof a)
#define inf 10000000
using namespace std;
typedef long long ll;
typedef pair<int,int>pii;
const int N = 4e5+;
const double eps = 1e-;
int n,sum[N],m,cnt;
ll ans;
int lazy[N],a[N],mi[N],ma[N];
struct Line{
int u,y,z;
Line(int u=,int y=,int z=):u(u),y(y),z(z){}
bool operator <(const Line f)const{
return u<f.u||u==f.u&&z<f.z;
}
};
vector<Line>r,c,q;
void init(){
cnt=ans=;
met(a,);
r.clear();c.clear();q.clear();
}
void add(int x,int num){
for(int i=x;i<N;i+=i&(-i)){
a[i]+=num;
}
}
int query(int x){
int ret=;
for(int i=x;i>=;i-=i&(-i)){
ret+=a[i];
}
return ret;
}
int main() {
int T,x,y,xx,yy;
scanf("%d",&T);
while(T--){
init();
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d%d%d%d",&x,&y,&xx,&yy);
mi[++cnt]=x;mi[++cnt]=xx;
mi[++cnt]=y;mi[++cnt]=yy;
if(x==xx){
if(y>yy)swap(y,yy);
c.pb(Line(x,y,yy));
}
if(y==yy){
if(x>xx)swap(x,xx);
r.pb(Line(y,x,xx));
}
}
sort(mi+,mi++cnt);
cnt=unique(mi+,mi++cnt)-mi-;
for(int i=;i<c.size();i++){
c[i].u=lower_bound(mi+,mi++cnt,c[i].u)-mi;
c[i].y=lower_bound(mi+,mi++cnt,c[i].y)-mi;
c[i].z=lower_bound(mi+,mi++cnt,c[i].z)-mi;
q.pb(Line(c[i].u,i,));
}
for(int i=;i<r.size();i++){
r[i].u=lower_bound(mi+,mi++cnt,r[i].u)-mi;
r[i].y=lower_bound(mi+,mi++cnt,r[i].y)-mi;
r[i].z=lower_bound(mi+,mi++cnt,r[i].z)-mi;
q.pb(Line(r[i].y,i,));
q.pb(Line(r[i].z,i,));
}
sort(q.begin(),q.end());
for(Line s:q){
if(s.z==)add(r[s.y].u,);
else if(s.z==)ans+=query(c[s.y].z)-query(c[s.y].y-);
else add(r[s.y].u,-);
}
printf("%lld\n",ans);
}
return ;
}

HDU 5862 Counting Intersections(离散化 + 树状数组)的更多相关文章

  1. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  2. HDU 5862 Counting Intersections (树状数组)

    Counting Intersections 题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 Description Given ...

  3. HDU 5862 Counting Intersections 扫描线+树状数组

    题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 Counting Intersections Time Limit: 12000/ ...

  4. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. HDU 5862 Counting Intersections (离散化+扫描线+树状数组)

    题意:给你若干个平行于坐标轴的,长度大于0的线段,且任意两个线段没有公共点,不会重合覆盖.问有多少个交点. 析:题意很明确,可是并不好做,可以先把平行与x轴和y轴的分开,然后把平行y轴的按y坐标从小到 ...

  6. Hdu 5862 Counting Intersections(有n条线段,每一条线段都是平行于x轴或者y轴,问有多少个交点+树状数组区间求和单点跟新)

    传送门:Hdu 5862 Counting Intersections 题意:有n条线段,每一条线段都是平行于x轴或者y轴,问有多少个交点 分析: 基本的操作流程是:先将所有的线段按照横树坐标x按小的 ...

  7. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

  8. 【bzoj4756】[Usaco2017 Jan]Promotion Counting 离散化+树状数组

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832263.html 题目描述 The cows have once again tried to form a s ...

  9. hdu 5862 Counting Intersections

    传送门:hdu 5862 Counting Intersections 题意:对于平行于坐标轴的n条线段,求两两相交的线段对有多少个,包括十,T型 官方题解:由于数据限制,只有竖向与横向的线段才会产生 ...

  10. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

随机推荐

  1. Ubuntu 15.04 编译UE4 for Linux版

    源 起 Unreal Engine 4 是全球最先进的Realtime Illumination & Physical 引擎: 长期以来,UE4都只有Windows版和Mac版,今年终于向Li ...

  2. 【51NOD-0】1019 逆序数

    [算法]离散化+树状数组(求逆序对) [题解]经典,原理是统计在i之前插入的且值≤i的个数,然后答案就是i-getsum(i) #include<cstdio> #include<a ...

  3. bzoj 1406 数论

    首先问题的意思就是在找出n以内的所有x^2%n=1的数,那么我们可以得到(x+1)(x-1)=y*n,那么我们知道n|(x+1)(x-1),我们设n=a*b,那么我们对于任意的a,我们满足n%a==0 ...

  4. vue实现微信对话

    因为项目中需要实现仿微信对话功能,于是抽空实现了下,主要是h5的canvas的把图片和文字绘制到画布上 原文来自我的个人博客:http://lvhww.com/index.php/archives/6 ...

  5. io多路复用-select()

    参照<Unix网络编程>相关章节内容,实现了一个简单的单线程IO多路复用服务器与客户端. 普通迭代服务器,由于执行recvfrom则会发生阻塞,直到客户端发送数据并正确接收后才能够返回,一 ...

  6. 64_g4

    gnatcoll-2014-10.fc26.x86_64.rpm 28-Feb-2017 17:44 1738266 gnatcoll-devel-2014-10.fc26.i686.rpm 28-F ...

  7. linux指令和文件系统

    linux root用户的主目录是 /root , 其余用户在 /home 中: tar 常用 tar -zxvf : 安装使用 yum or wget website: mv a.g b.g 重命名 ...

  8. python一步高级编程

    1.==,is的使用 总结 ·is是比较两个引用是否指向了同一个对象(引用比较). ·==是比较两个对象是否相等. 2.深拷贝.浅拷贝 1.浅拷贝 浅拷贝是对于一个对象的顶层拷贝 通俗的理解是:拷贝了 ...

  9. Centos7 配置网络

    /* Centos7 的网络 不可以用ifconfig获取,需要安装包 所以 .*/ //查看ip [root@master ~]# ip a /* Centos7 的网卡名字与 Centos6有区别 ...

  10. WPS2019体验

    不久之前WPS2019发布了, 说实话, 做的真的不错. 没找到2016版本多得吓人的广告, 没有那糟糕的页面设计, 没有那卡顿的体验. 而且不同的程序(文字, 演示)做成了类似标签页的形式, 体验比 ...