【高斯消元】CDOJ1783 曜酱的线性代数课堂(一)
高斯消元求逆矩阵板子。
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const double EPS=0.00000001;
#define N 105
int n;
double B[N][N*2],A[N][N*2],C[N][N];
bool guass_jordan()
{
memcpy(B,A,sizeof(A));
for(int i=1;i<=n;++i){
for(int j=n+1;j<=n*2;++j){
if(i==j-n){
B[i][j]=1.0;
}
else{
B[i][j]=0.0;
}
}
}
for(int i=1;i<=n;++i){
int pivot=i;
for(int j=i+1;j<=n;++j){
if(fabs(B[j][i])>fabs(B[pivot][i])){
pivot=j;
}
}
swap(B[i],B[pivot]);
if(fabs(B[i][i])<EPS){
return 0;
}
for(int j=i+1;j<=n*2;++j){
B[i][j]/=B[i][i];
}
for(int j=1;j<=n;++j){
if(i!=j){
for(int k=i+1;k<=n*2;++k){
B[j][k]-=B[j][i]*B[i][k];
}
}
}
}
for(int i=1;i<=n;++i){
for(int j=n+1;j<=n*2;++j){
C[i][j-n]=B[i][j];
}
}
}
int T;
int main()
{
// freopen("nijuzhen2.in","r",stdin);
// freopen("nijuzhen2.out","w",stdout);
char t[10];
while(scanf("%d",&n)!=EOF){
memset(A,0,sizeof(A));
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
scanf("%lf",&A[i][j]);
}
}
if(guass_jordan()){
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
sprintf(t,"%.3f",C[i][j]);
if(t[0]=='-' && t[1]=='0' && t[2]=='.' && t[3]=='0' && t[4]=='0' && t[5]=='0'){
printf("0.000%c",j==n ? '\n' : ' ');
}
else{
printf("%.3f%c",C[i][j],j==n ? '\n' : ' ');
}
}
}
}
else{
puts("NO");
}
}
return 0;
}
【高斯消元】CDOJ1783 曜酱的线性代数课堂(一)的更多相关文章
- 【高斯消元】CDOJ1785 曜酱的线性代数课堂(三)
高斯消元求行列式板子. #include<cstdio> #include<cmath> #include<algorithm> #include<cstri ...
- 【高斯消元】CDOJ1784 曜酱的线性代数课堂(二)
高斯消元求矩阵秩板子. #include<cstdio> #include<cmath> #include<algorithm> #include<cstri ...
- P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)
题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...
- 【CF736D】Permutations 线性代数+高斯消元
[CF736D]Permutations 题意:有一个未知长度为n的排列和m个条件,第i个条件$(a_i,b_i)$表示第$a_i$个位置上的数可以为$b_i$.保证最终合法的排列的个数是奇数.现在有 ...
- [高斯消元] POJ 2345 Central heating
Central heating Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 614 Accepted: 286 Des ...
- 高斯消元 分析 && 模板 (转载)
转载自:http://hi.baidu.com/czyuan_acm/item/dce4e6f8a8c45f13d7ff8cda czyuan 先上模板: /* 用于求整数解得方程组. */ #inc ...
- POJ 1830 开关问题(高斯消元)题解
思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...
- poj1222(枚举or高斯消元解mod2方程组)
题目链接: http://poj.org/problem?id=1222 题意: 有一个 5 * 6 的初始矩阵, 1 表示一个亮灯泡, 0 表示一个不亮的灯泡. 对 (i, j) 位置进行一次操作则 ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
随机推荐
- java 错误: 找不到或无法加载主类解决方法
1.配置好jdk与jre环境变量路径 https://www.cnblogs.com/xch-yang/p/7629351.html 2.在编译和运行的时候需要注意如下格式.
- elementui input样式覆盖 头部小图等
.nav-right >>> .keywords .el-input__inner { -webkit-appearance: none; background-color: #F3 ...
- css纯样式导航
<style>.dropdown { position: relative; display: inline-block;} .dropdown-content { di ...
- 什么是AMD规范
AMD规范全称是Asynchronous Module Definition,即异步模块加载机制.从它的规范描述页面看,AMD很短也很简单,但它却完整描述了模块的定义,依赖关系,引用关系以及加载机制. ...
- Keepalived 安装与简单配置
Keepalived 安装与简单配置 http://sivxy.lofter.com/post/1d21ebb9_7e15000
- Win7蓝屏代码0X0000007B可能是SATA mode问题
Win7蓝屏代码0X0000007B可能是硬盘模式的问题,我进入BIOS把SATA的mode从Enhanced改为Compatible(及IDE兼容模式)结果系统可以顺利启动没有问题. 从 ...
- 【bzoj1072】SCOI2007排列
状压dp,f[i][j]表示当前取了i,模数余j的状态. 然后向后推,枚举可能的数即可. 注意每个数存在重复,最后要除以相应出现次数的阶乘. #include<bits/stdc++.h> ...
- git - 开发者电脑与服务器的配置
首先公司要有一台git服务器,现在一般都托管在github服务器上,在中国可能会托管到oschina上,oschina有一点好处就是可以免费托管私有项目,而在github上想要托管自己的项目是收费的, ...
- MyEclipse/Eclipse安装插件的几种方式
众所周知MyEclipse是一个很强大的Java IDE,而且它有许多开源免费又好用的插件,这些插件给我们开发过程中带来了许多方便.插件具有针对性,例如,你如果做安卓开发,可能需要一个ADT(Andr ...
- C++ STL结构总结
1. 什么是STL 它的全名是stand template library, 标准模板库,主要是将一些结构和算法写成模板,以便能够实现对任意类型的对象都可以操作,而不需要再一次去写一些算法及结构. 它 ...