项链(burnside)
Description
有一个长度为 \(n\) 的项链,首尾相接形成环,现在你要给每一个位置一个颜色 \([1,m]\), 求所有不同的项链个数(可以通过旋转变成一样的称为相同)
Solution
根据 \(burnside\) 引理,答案为 \(\frac{1}{n}\sum_{i=1}^{|G|}c1_i\)
也就是枚举所有的置换,求不动点个数之和
置换一共有 \(n\) 种,分别为 \(1,2...n\)
枚举旋转的长度 \(i\) ,那么循环节的大小为 \(\frac{n}{gcd(i,n)}\) , 循环节个数为 \(gcd(i,n)\)
为什么?要使得 \(k*i \mod n=0\) ,那么 \(k*i\) 的最小值就是 \(lcm=\frac{i*n}{gcd(i,n)}\) ,所以 \(k\) 就等于 \(\frac{n}{gcd(i,n)}\) 了
那么要使得这个点为不动点(旋转 \(i\) 之后一模一样),那么同一循环节里面的点必须颜色相同
那么点的可以缩减为 \(gcd(i,n)\) 种
相当于问题转化为用 \(m\) 中颜色去覆盖 \(x=gcd(i,n)\) 个位置,我们设方案数为 \(calc(x,m)\)
转化为求 \(\sum_{i=1}^{n}calc(gcd(i,n),m)\)
枚举 \(gcd\)
答案就是 \(\sum_{i=1}^{n}calc(i)*phi[\lfloor\frac{n}{i}\rfloor]\)
\(calc\) 函数可以用矩乘求出
#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=1e7+10,mod=9973;
int prime[N],num=0,phi[N],n,K,m;bool vis[N];
inline void priwork(){
phi[1]=1;
for(int i=2,t;i<N;i++){
if(!vis[i])prime[++num]=i,phi[i]=i-1;
for(int j=1;j<=num && i*prime[j]<N;j++){
vis[t=i*prime[j]]=1;
if(i%prime[j])phi[t]=phi[i]*(prime[j]-1);
else {phi[t]=phi[i]*prime[j];break;}
}
}
}
inline int getphi(int x){
if(x<N)return phi[x];
int lim=sqrt(x),ret=x;
for(int i=1;i<=num && prime[i]<=lim;i++){
if(x%prime[i]==0){
ret=ret/prime[i]*(prime[i]-1);
while(x%prime[i]==0)x/=prime[i];
}
}
if(x>1)ret=ret/x*(x-1);
return ret;
}
struct mat{
int a[10][10];
inline void init(){memset(a,0,sizeof(a));}
inline mat operator *(const mat &p)const{
mat ret;
for(int i=0;i<m;i++)
for(int j=0;j<m;j++){
ret.a[i][j]=0;
for(int k=0;k<m;k++)
if(a[i][k] && p.a[k][j])
ret.a[i][j]=(ret.a[i][j]+a[i][k]*p.a[k][j])%mod;
}
return ret;
}
}S,T;
inline int calc(int x){
S.init();
for(int i=0;i<m;i++)S.a[i][i]=1;
mat D=T;x--;
while(x){
if(x&1)S=S*D;
D=D*D;x>>=1;
}
int ret=0;
for(int i=0;i<m;i++)
for(int j=0;j<m;j++)ret=(ret+S.a[i][j]*T.a[i][j])%mod;
return ret;
}
inline int qm(int x,int k){
int sum=1;if(x>=mod)x%=mod;
while(k){
if(k&1)sum=sum*x%mod;
x=x*x%mod;k>>=1;
}
return sum;
}
inline void work(){
int x,y;
cin>>n>>m>>K;
T.init();
for(int i=0;i<m;i++)for(int j=0;j<m;j++)T.a[i][j]=1;
for(int i=1;i<=K;i++){
gi(x);gi(y);x--;y--;
T.a[x][y]=T.a[y][x]=0;
}
int lim=sqrt(n),ans=0;
for(int i=1;i<=lim;i++){
if(n%i)continue;
ans=(ans+1ll*calc(i)*getphi(n/i))%mod;
if(i*i!=n)ans=(ans+1ll*calc(n/i)*getphi(i))%mod;
}
ans=ans*qm(n,mod-2)%mod;
cout<<ans<<endl;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
priwork();
int T;cin>>T;
while(T--)work();
return 0;
}
项链(burnside)的更多相关文章
- 【BZOJ3202】项链(莫比乌斯反演,Burnside引理)
[BZOJ3202]项链(莫比乌斯反演,Burnside引理) 题面 BZOJ 洛谷 题解 首先读完题目,很明显的感觉就是,分成了两个部分计算. 首先计算本质不同的珠子个数,再计算本质不同的项链个数. ...
- P3307-[SDOI2013]项链【Burnside引理,莫比乌斯反演,特征方程】
正题 题目链接:https://www.luogu.com.cn/problem/P3307 题目大意 \(n\)个珠子的一个环形项链,每个珠子有三个\(1\sim k\)的整数. 两个珠子不同当且仅 ...
- 洛谷 P3307 - [SDOI2013]项链(Burnside 引理+数论)
题面传送门 看到题目我们显然可以将题目拆分成两部分:首先求出有多少个符合要求的珠子 \(c\),这样我们就可以将每种珠子看成一种颜色,题目也就等价于有多少种用 \(c\) 种颜色染长度为 \(n\) ...
- polya/burnside 学习
参考链接: http://www.cnblogs.com/hankers/archive/2012/08/03/2622231.html http://blog.csdn.net/raalghul/a ...
- bzoj 4330: JSOI2012 爱之项链
听说这题不公开.. 那就不贴题意了 首先要用burnside引理求出戒指的种数,那么对于一个顺时针旋转$k$个位置的置换就相当于连上一条$(i,(i+k)%R)$的边,每个环颜色必须相同 环的个数为$ ...
- bzoj3202:[Sdoi2013]项链
思路:首先考虑如何求珠子个数,一个珠子由a,b,c三个数组成且属于区间[1,a],并满足gcd(a,b,c)=1.由于要求本质相同,对于a,b,c这样的一个无序的数列且满足gcd(a,b,c)=1,设 ...
- HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...
- Burnside引理与Polya定理 学习笔记
原文链接www.cnblogs.com/zhouzhendong/p/Burnside-Polya.html 问题模型 有一个长度为 $n$ 的序列,序列中的每一个元素有 $m$ 种取值. 如果两个序 ...
- Invoker-n颜色涂m个珠子的项链
参考https://blog.csdn.net/anxdada/article/details/76862564. https://blog.csdn.net/baidu_35643793/artic ...
随机推荐
- Replication--复制笔记1
1.快照复制和事务复制使用分发代理传递文件,而合并复制使用合并代理来传递文件2.快照代理在分发服务器上运行3.在创建快照是,根据复制的类型对发布表的加锁方式而不同 a)对应合并发布,快照代理不适 ...
- Entity Framework 高性能 泛型缓存+动态Lambda
前言:自学CSharp挺长时间的了,这是我第一编博客,跟大家分享一下.如有不足地方请多多包涵,也欢迎大家提出更好的意见,下面开始进入正题. 一.泛型缓存 1.概念:1.泛型(泛型也是一种推断类型,从而 ...
- selenium alert JS弹窗问题处理
弹窗一般分为三种类型: 1.警告消息框(alert) 警告消息框提供了一个"确定"按钮让用户关闭该消息框,并且该消息框是模式对话框,也就是说用户必须先关闭该消息框然后才能继续进行操 ...
- jQuery展开收缩2
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8& ...
- 模拟RHCSA考试环境
转载自 http://blog.51cto.com/10681635/2084794 模拟RHCSA考试环境 第1章 修改 root 密码 第2章 配置网络 第3章 设定SeLinux 第4章 ...
- Mysql创建、删除用户[转]
MySql中添加用户,新建数据库,用户授权,删除用户,修改密码(注意每行后边都跟个;表示一个命令语句结束): 1.新建用户 登录MYSQL: @>mysql -u root -p @>密码 ...
- linux使用rsync、inotify-tools实现多台服务器文件实时同步
需求:将本地192.168.1.10上的/data/wwwroot目录同步到 1.来源服务器上安装rsync.inotify-tools yum -y install rsync yum -y ins ...
- NOIP前的模板
1.筛\(phi\) \(logn\)求少数\(phi\) inline int phi(R int x){ R int res=x,tmp=x; for(R int i=2;i*i<=x;i+ ...
- c语言-学生成绩信息系统
#include<stdio.h> #define N 100 int Count=0; struct stu { int num; char name[20]; int computer ...
- 原始MAC地址
D8CB8AD97D47