HDU - 6314:Matrix (广义容斥)(占位)
the magical matrix is a matrix with n rows and m columns, and every single block should be painted either black or white.
Sam wants to know how many ways to paint the matrix, satisfied that the final matrix has at least A rows, B columns was painted completely black. Cause the answer might be too big, you only need to output it modulo 998244353.
InputThere might be multiple test cases, no more than 5. You need to read till the end of input.
For each test case, a line containing four integers n,m,A,B.
1≤n,m,A,B≤3000 1≤n,m,A,B≤3000
.
OutputFor each test case, output a line containing the answer modulo 998244353.
Sample Input
3 4 1 2
Sample Output
169
题意:给N*M的空白格子染色,求至少x行,至少y列被染色的方案数。
思路:不会,占位。
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int maxn = ;
const int MOD = ;
int n, m, A, B, ans;
int C[maxn][maxn], two[maxn * maxn];
int fa[maxn], fb[maxn]; void Init() {
for(int i = ; i < maxn; ++i) {
for(int j = ; j <= i; ++j) {
if(j == i || j == ) {
C[i][j] = ;
} else {
C[i][j] = C[i - ][j - ] + C[i - ][j];
if(C[i][j] >= MOD) {
C[i][j] -= MOD;
}
}
}
}
two[] = ;
for(int i = ; i < maxn * maxn; ++i) {
two[i] = two[i - ] * ;
if(two[i] >= MOD) {
two[i] -= MOD;
}
}
} int main() {
Init();
while(~scanf("%d%d%d%d", &n, &m, &A, &B)) {
ans = ;
for(int i = A; i <= n; ++i) {
fa[i] = ;
for(int j = A; j < i; ++j) {
fa[i] = (fa[i] + (LL)C[i][j] * fa[j]) % MOD;
}
fa[i] = - fa[i];
if(fa[i] < ) {
fa[i] += MOD;
}
}
for(int i = B; i <= m; ++i) {
fb[i] = ;
for(int j = B; j < i; ++j) {
fb[i] = (fb[i] + (LL)C[i][j] * fb[j]) % MOD;
}
fb[i] = - fb[i];
if(fb[i] < ) {
fb[i] += MOD;
}
}
for(int i = A; i <= n; ++i) {
LL tmp = (LL)fa[i] * C[n][i] % MOD;
for(int j = B; j <= m; ++j) {
ans = (ans + ((tmp * fb[j] % MOD) * C[m][j] % MOD) * two[(n - i) * (m - j)] % MOD) % MOD;
}
}
printf("%d\n", ans);
} return ;
}
HDU - 6314:Matrix (广义容斥)(占位)的更多相关文章
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划+广义容斥)
点此看题面 大致题意: 有\(n\)个糖果和\(n\)个药片,各有自己的能量.将其两两配对,求糖果比药片能量大的组数恰好比药片比糖果能量大的组数多\(k\)组的方案数. 什么是广义容斥(二项式反演) ...
- P4491 [HAOI2018]染色 广义容斥 NTT 生成函数
LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- HDU - 6314 Matrix(广义容斥原理)
http://acm.hdu.edu.cn/showproblem.php?pid=6314 题意 对于n*m的方格,每个格子只能涂两种颜色,问至少有A列和B行都为黑色的方案数是多少. 分析 参考ht ...
- C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥
C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...
- HDU 5297 Y sequence 容斥 迭代
Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- HDU 4609 3-idiots FFT+容斥
一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完 ...
- HDU 4336 Card Collector(容斥)
题意:要收集n种卡片,每种卡片能收集到的概率位pi,求收集完这n种卡片的期望.其中sigma{pi} <=1; 思路:容斥原理.就是一加一减,那么如何算期望呢.如果用二进制表示,0表示未收集到, ...
随机推荐
- Loadrunner场景设计篇——负载生成器
1 简介 当执行一个场景时,Controller把场景中的每个用户配到负载生成器(Load generator). 所谓的负载生成器(Load Generator)就是执行Vuser脚本,运行Vus ...
- Flume1.7.0概述
Flume概述 常见的开源数据收集系统有: 非结构数据(日志)收集 Flume 结构化数据收集(传统数据库与 Hadoop 同步) Sqoop:全量导入 Canal(alibaba):增量导入 Dat ...
- linux 搭建 nexus maven私服仓储
一.下载 1.创建下载软件包目录 mkdir /home/install 2.在/home/install下载nexus包,或者将下载好的nexus压缩包上传至/home/install wget ...
- java没有指针
先说结论:java没有指针,它使用对象引用来替代指针 备注:c/c++的引用和java的引用完全不是一个东西 c/c++的引用是同一块内存的不同名字 java的引用指向一个对象,引用本身也占用了内存 ...
- Maven的SSM框架配置文件:
applicationContext.xml: <?xml version="1.0" encoding="UTF-8"?> <beans x ...
- Linux下挂载windows的共享文件夹
环境说明: 由于领导要求:现需要将某Linux服务器下的一个文件移动到某windows服务器下(服务器均在机房托管,要远程操作) 由于操作为一次性,则决定在windows下建立一个共享文件夹,linu ...
- quartz(4)--quartz.properties文件
Quartz有一个叫做quartz.properties的配置文件,它允许你修改框架运行时环境.缺省是使用Quartz.jar里面的quartz.properties文件.当然你应该创建一个quart ...
- nginx+tomcat网页动静分离配置
1.环境描述 nginx server (Proxy):192.168.1.135(作为代理服务器)WEB server1: 192.168.1.138(使用tomcat作为web容器)WEB ser ...
- JQuery -- 介绍,选择器及其示例, 基本选择器,层次选择器,过滤选择器,表单选择器
1. 什么是jQuery对象 jQuery 对象就是通过jQuery包装DOM对象后产生的对象. jQuery对象是jQuery独有的.如果一个对象是jQuery对象,那么它就可以使用jQuery里的 ...
- linux的一些操作
在终端输入cat /etc/issue 查看ubuntu的半磅不知道ubuntu特权用户root的密码时:Ubuntu在默认情况下是不启用root用户的,所以这对于一下对于linux命令不熟悉的用户在 ...