HDU - 6314:Matrix (广义容斥)(占位)
the magical matrix is a matrix with n rows and m columns, and every single block should be painted either black or white.
Sam wants to know how many ways to paint the matrix, satisfied that the final matrix has at least A rows, B columns was painted completely black. Cause the answer might be too big, you only need to output it modulo 998244353.
InputThere might be multiple test cases, no more than 5. You need to read till the end of input.
For each test case, a line containing four integers n,m,A,B.
1≤n,m,A,B≤3000 1≤n,m,A,B≤3000
.
OutputFor each test case, output a line containing the answer modulo 998244353.
Sample Input
3 4 1 2
Sample Output
169
题意:给N*M的空白格子染色,求至少x行,至少y列被染色的方案数。
思路:不会,占位。
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int maxn = ;
const int MOD = ;
int n, m, A, B, ans;
int C[maxn][maxn], two[maxn * maxn];
int fa[maxn], fb[maxn]; void Init() {
for(int i = ; i < maxn; ++i) {
for(int j = ; j <= i; ++j) {
if(j == i || j == ) {
C[i][j] = ;
} else {
C[i][j] = C[i - ][j - ] + C[i - ][j];
if(C[i][j] >= MOD) {
C[i][j] -= MOD;
}
}
}
}
two[] = ;
for(int i = ; i < maxn * maxn; ++i) {
two[i] = two[i - ] * ;
if(two[i] >= MOD) {
two[i] -= MOD;
}
}
} int main() {
Init();
while(~scanf("%d%d%d%d", &n, &m, &A, &B)) {
ans = ;
for(int i = A; i <= n; ++i) {
fa[i] = ;
for(int j = A; j < i; ++j) {
fa[i] = (fa[i] + (LL)C[i][j] * fa[j]) % MOD;
}
fa[i] = - fa[i];
if(fa[i] < ) {
fa[i] += MOD;
}
}
for(int i = B; i <= m; ++i) {
fb[i] = ;
for(int j = B; j < i; ++j) {
fb[i] = (fb[i] + (LL)C[i][j] * fb[j]) % MOD;
}
fb[i] = - fb[i];
if(fb[i] < ) {
fb[i] += MOD;
}
}
for(int i = A; i <= n; ++i) {
LL tmp = (LL)fa[i] * C[n][i] % MOD;
for(int j = B; j <= m; ++j) {
ans = (ans + ((tmp * fb[j] % MOD) * C[m][j] % MOD) * two[(n - i) * (m - j)] % MOD) % MOD;
}
}
printf("%d\n", ans);
} return ;
}
HDU - 6314:Matrix (广义容斥)(占位)的更多相关文章
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划+广义容斥)
点此看题面 大致题意: 有\(n\)个糖果和\(n\)个药片,各有自己的能量.将其两两配对,求糖果比药片能量大的组数恰好比药片比糖果能量大的组数多\(k\)组的方案数. 什么是广义容斥(二项式反演) ...
- P4491 [HAOI2018]染色 广义容斥 NTT 生成函数
LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- HDU - 6314 Matrix(广义容斥原理)
http://acm.hdu.edu.cn/showproblem.php?pid=6314 题意 对于n*m的方格,每个格子只能涂两种颜色,问至少有A列和B行都为黑色的方案数是多少. 分析 参考ht ...
- C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥
C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...
- HDU 5297 Y sequence 容斥 迭代
Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- HDU 4609 3-idiots FFT+容斥
一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完 ...
- HDU 4336 Card Collector(容斥)
题意:要收集n种卡片,每种卡片能收集到的概率位pi,求收集完这n种卡片的期望.其中sigma{pi} <=1; 思路:容斥原理.就是一加一减,那么如何算期望呢.如果用二进制表示,0表示未收集到, ...
随机推荐
- vue2.0过度动画
vue在插入.更新或移除dom时,提供了多种不同方式的应用过度效果. 包括以下工具: 在css过渡和动画中自动应用class. 可以配合使用第三方css动画库,如animate.css 在过渡钩子函数 ...
- HTML5侧滑聊天面板
在线演示 本地下载
- React Native导航器之react-navigation使用
在上一节Navigation组件,我们使用系统提供的导航组件做了一个跳转的例子,不过其实战能力不强,这里推荐一个超牛逼的第三方库:react-navigation.在讲react-navigation ...
- Batch Normalization 详解
一.背景意义 本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:<Batch Normalization: Accelerating Deep Network Training b ...
- SpringBoot 表单验证
Valid 注解 JSR 303 校验框架注解类: • @NotNull 注解元素必须是非空 • @Null 注解元素必须是空 • @Digits 验证数字构成是否合法 • @Future 验证是否在 ...
- C++ 之虚函数的实现原理
c++的多态使用虚函数实现,通过“晚绑定”,使程序在运行的时候,根据对象的类型去执行对应的虚函数. C++ 之虚函数的实现原理 带有虚函数的类,编译器会为其额外分配一个虚函数表,里面记录的使虚函数的地 ...
- Linux新手常用命令 - 转载
开始→运行→cmd命令 集锦 cls------------命令窗清屏eqit-----------退出当前命令ping ip--------检查网络故障ipconfig-------查看IP地址wi ...
- authentication token manipulation error
用户服务器中修改密码,输入passwd命令后,报错authentication token manipulation error 发生该错误原因是: 1.分区没有空间导致. 2./etc/pass ...
- .net 数据脱敏代码实现
方案一: DTO中处理: private string idNumber; /// <summary> /// 身份证号码 /// </summary> [Column(&qu ...
- MySQL安装详解图文版(V5.5 For Windows)
MySQL在Windows中会得到越来越广泛的应用.故整理MySQL安装详解如下,以备不时之需.安装环境:Windows Server 2003 [32bit NTFS]版本信息:MySQL 5.5. ...