A new Graph Game

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2360    Accepted Submission(s): 951

Problem Description
An
undirected graph is a graph in which the nodes are connected by
undirected arcs. An undirected arc is an edge that has no arrow. Both
ends of an undirected arc are equivalent--there is no head or tail.
Therefore, we represent an edge in an undirected graph as a set rather
than an ordered pair.
Now given an undirected graph, you could delete
any number of edges as you wish. Then you will get one or more
connected sub graph from the original one (Any of them should have more
than one vertex).
You goal is to make all the connected sub graphs
exist the Hamiltonian circuit after the delete operation. What’s more,
you want to know the minimum sum of all the weight of the edges on the
“Hamiltonian circuit” of all the connected sub graphs (Only one
“Hamiltonian circuit” will be calculated in one connected sub graph!
That is to say if there exist more than one “Hamiltonian circuit” in one
connected sub graph, you could only choose the one in which the sum of
weight of these edges is minimum).
  For example, we may get two possible sums:

(1)  7 + 10 + 5 = 22
(2)  7 + 10 + 2 = 19
(There are two “Hamiltonian circuit” in this graph!)
 
Input
In the first line there is an integer T, indicates the number of test cases. (T <= 20)
In
each case, the first line contains two integers n and m, indicates the
number of vertices and the number of edges. (1 <= n <=1000, 0
<= m <= 10000)
Then m lines, each line contains three integers
a,b,c ,indicates that there is one edge between a and b, and the weight
of it is c . (1 <= a,b <= n, a is not equal to b in any way, 1
<= c <= 10000)
 
Output
Output
“Case %d: “first where d is the case number counted from one. Then
output “NO” if there is no way to get some connected sub graphs that any
of them exists the Hamiltonian circuit after the delete operation.
Otherwise, output the minimum sum of weight you may get if you delete
the edges in the optimal strategy.

 
Sample Input
3

3 4
1 2 5
2 1 2
2 3 10
3 1 7

3 2
1 2 3
1 2 4

2 2
1 2 3
1 2 4

 
Sample Output
Case 1: 19
Case 2: NO
Case 3: 6
 
题意:将一个无向图删边得到一些子图,并使每个子图中存在哈密顿回路,并使所有哈密顿回路上边的权值最小。如果有,输出这个最小的子图,如果没有,输出NO。
题解:每个点的话就是出度和入度都为1了,每个点必须且仅走一次,这样的话就是二分图完美匹配了。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
int graph[N][N];
int lx[N], ly[N];
bool visitx[N], visity[N];
int slack[N];
int match[N];
int n,m;
bool Hungary(int u)
{
int temp;
visitx[u] = true;
for(int i = ; i <= n; ++i)
{
if(visity[i])
continue;
else
{
temp = lx[u] + ly[i] - graph[u][i];
if(temp == ) //相等子图
{
visity[i] = true;
if(match[i] == - || Hungary(match[i]))
{
match[i] = u;
return true;
}
}
else //松弛操作
slack[i] = min(slack[i], temp);
}
}
return false;
}
void KM()
{
int temp;
memset(match,-,sizeof(match));
memset(ly,,sizeof(ly));
for(int i = ;i <= n;i++) //定标初始化
lx[i] = -INF;
for(int i =;i<=n;i++)
for(int j=;j<= n;j++)
lx[i] = max(lx[i], graph[i][j]);
for(int i = ; i <= n;i++)
{
for(int j = ; j <= n;j++)
slack[j] = INF;
while()
{
memset(visitx,false,sizeof(visitx));
memset(visity,false,sizeof(visity));
if(Hungary(i))
break;
else
{
temp = INF;
for(int j = ; j <= n; ++j)
if(!visity[j]) temp = min(temp, slack[j]);
for(int j = ; j <= n; ++j)
{
if(visitx[j]) lx[j] -= temp;
if(visity[j]) ly[j] += temp;
else slack[j] -= temp;
}
}
}
}
}
int main()
{
int tcase;
int t= ;
scanf("%d",&tcase);
while(tcase--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
graph[i][j] = -INF;
}
}
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u==v) continue;
graph[u][v] = graph[v][u] = max(graph[u][v],-w);
}
KM();
int ans = ;
bool flag = false;
for(int i=;i<=n;i++){
if(match[i]==-||graph[match[i]][i]==-INF){
flag = true;
break;
}
ans+=graph[match[i]][i];
}
printf("Case %d: ",t++);
if(flag)printf("NO\n");
else printf("%d\n",-ans);
}
return ;
}

hdu 3435(KM算法最优匹配)的更多相关文章

  1. hdu 2448(KM算法+SPFA)

    Mining Station on the Sea Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  2. HDU 2255 KM算法 二分图最大权值匹配

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  3. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  4. hdu 4862 KM算法 最小K路径覆盖的模型

    http://acm.hdu.edu.cn/showproblem.php?pid=4862 选t<=k次,t条路要经过全部的点一次而且只一次. 建图是问题: 我自己最初就把n*m 个点分别放入 ...

  5. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. HDU 1533 KM算法(权值最小的最佳匹配)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. HDU 3435 KM A new Graph Game

    和HDU 3488一样的,只不过要判断一下是否有解. #include <iostream> #include <cstdio> #include <cstring> ...

  8. hdu 1853 KM算法

    #include<stdio.h> #include<math.h> #include<string.h> #define N 200 #define inf 99 ...

  9. km算法(二分图最大权匹配)学习

    啦啦啦! KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转 化为求完备匹配的问题的.设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j].在 ...

随机推荐

  1. switch语法的盲点

    switch语法在项目使用的频率很低,今天看到一个相关的例子引发一些思考,,同时自己也写了一些简单的例子如下: 实例1: int dayOfWeek = 5; switch (dayOfWeek){ ...

  2. # Codeforces Round #529(Div.3)个人题解

    Codeforces Round #529(Div.3)个人题解 前言: 闲来无事补了前天的cf,想着最近刷题有点点怠惰,就直接一场cf一场cf的刷算了,以后的题解也都会以每场的形式写出来 A. Re ...

  3. HDU5957 Query on a graph(拓扑找环,BFS序,线段树更新,分类讨论)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5957 题意:D(u,v)是节点u和节点v之间的距离,S(u,v)是一系列满足D(u,x)<=k的点 ...

  4. select和epoll概念

    关于linux的I/O复用接口select和epoll,下列说法错误的是() select调用时会进行线性遍历,epoll采用回调函数机制,不需要线性遍历 select的最大连接数为FD_SETSIZ ...

  5. 02.树的序列化与反序列化(C++)

    1.二叉树的序列化 输入的一棵树: //二叉树的先序遍历-序列化 #include <iostream> #include <string> #include <sstr ...

  6. 数学:Burnside引理与Pólya定理

    这个计数定理在考虑对称的计数中非常有用 先给出这个定理的描述,虽然看不太懂: 在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积. 设C1(ak)是在置换ak的作用下不动 ...

  7. vijos 1180 选课 树形DP

    描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修了这M门课并考核通过就能获得 ...

  8. 使用MyBatis查询 返回类型为int,但是当查询结果为空NULL,报异常的解决方法

    使用MyBatis查询 返回类型为int,但是当查询结果为空NULL,会报异常. 例如: <select id="getPersonRecordId" parameterTy ...

  9. Windows/Linux javac/java编译运行引入所需的jar包

    > Windows 假设要引用的jar放在D:/test目录下,名字为t1.jar, java源文件放在D:/test/src目录下,名字为t2.java. 编译: javac  -cp  d: ...

  10. 为什么Javascript有设计缺陷

    1. 设计阶段过于仓促 Javascript的设计,其实只用了十天.而且,设计师是为了向公司交差,本人并不愿意这样设计(参见<Javascript诞生记>). 另一方面,这种语言的设计初衷 ...