A new Graph Game

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2360    Accepted Submission(s): 951

Problem Description
An
undirected graph is a graph in which the nodes are connected by
undirected arcs. An undirected arc is an edge that has no arrow. Both
ends of an undirected arc are equivalent--there is no head or tail.
Therefore, we represent an edge in an undirected graph as a set rather
than an ordered pair.
Now given an undirected graph, you could delete
any number of edges as you wish. Then you will get one or more
connected sub graph from the original one (Any of them should have more
than one vertex).
You goal is to make all the connected sub graphs
exist the Hamiltonian circuit after the delete operation. What’s more,
you want to know the minimum sum of all the weight of the edges on the
“Hamiltonian circuit” of all the connected sub graphs (Only one
“Hamiltonian circuit” will be calculated in one connected sub graph!
That is to say if there exist more than one “Hamiltonian circuit” in one
connected sub graph, you could only choose the one in which the sum of
weight of these edges is minimum).
  For example, we may get two possible sums:

(1)  7 + 10 + 5 = 22
(2)  7 + 10 + 2 = 19
(There are two “Hamiltonian circuit” in this graph!)
 
Input
In the first line there is an integer T, indicates the number of test cases. (T <= 20)
In
each case, the first line contains two integers n and m, indicates the
number of vertices and the number of edges. (1 <= n <=1000, 0
<= m <= 10000)
Then m lines, each line contains three integers
a,b,c ,indicates that there is one edge between a and b, and the weight
of it is c . (1 <= a,b <= n, a is not equal to b in any way, 1
<= c <= 10000)
 
Output
Output
“Case %d: “first where d is the case number counted from one. Then
output “NO” if there is no way to get some connected sub graphs that any
of them exists the Hamiltonian circuit after the delete operation.
Otherwise, output the minimum sum of weight you may get if you delete
the edges in the optimal strategy.

 
Sample Input
3

3 4
1 2 5
2 1 2
2 3 10
3 1 7

3 2
1 2 3
1 2 4

2 2
1 2 3
1 2 4

 
Sample Output
Case 1: 19
Case 2: NO
Case 3: 6
 
题意:将一个无向图删边得到一些子图,并使每个子图中存在哈密顿回路,并使所有哈密顿回路上边的权值最小。如果有,输出这个最小的子图,如果没有,输出NO。
题解:每个点的话就是出度和入度都为1了,每个点必须且仅走一次,这样的话就是二分图完美匹配了。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
int graph[N][N];
int lx[N], ly[N];
bool visitx[N], visity[N];
int slack[N];
int match[N];
int n,m;
bool Hungary(int u)
{
int temp;
visitx[u] = true;
for(int i = ; i <= n; ++i)
{
if(visity[i])
continue;
else
{
temp = lx[u] + ly[i] - graph[u][i];
if(temp == ) //相等子图
{
visity[i] = true;
if(match[i] == - || Hungary(match[i]))
{
match[i] = u;
return true;
}
}
else //松弛操作
slack[i] = min(slack[i], temp);
}
}
return false;
}
void KM()
{
int temp;
memset(match,-,sizeof(match));
memset(ly,,sizeof(ly));
for(int i = ;i <= n;i++) //定标初始化
lx[i] = -INF;
for(int i =;i<=n;i++)
for(int j=;j<= n;j++)
lx[i] = max(lx[i], graph[i][j]);
for(int i = ; i <= n;i++)
{
for(int j = ; j <= n;j++)
slack[j] = INF;
while()
{
memset(visitx,false,sizeof(visitx));
memset(visity,false,sizeof(visity));
if(Hungary(i))
break;
else
{
temp = INF;
for(int j = ; j <= n; ++j)
if(!visity[j]) temp = min(temp, slack[j]);
for(int j = ; j <= n; ++j)
{
if(visitx[j]) lx[j] -= temp;
if(visity[j]) ly[j] += temp;
else slack[j] -= temp;
}
}
}
}
}
int main()
{
int tcase;
int t= ;
scanf("%d",&tcase);
while(tcase--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
graph[i][j] = -INF;
}
}
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u==v) continue;
graph[u][v] = graph[v][u] = max(graph[u][v],-w);
}
KM();
int ans = ;
bool flag = false;
for(int i=;i<=n;i++){
if(match[i]==-||graph[match[i]][i]==-INF){
flag = true;
break;
}
ans+=graph[match[i]][i];
}
printf("Case %d: ",t++);
if(flag)printf("NO\n");
else printf("%d\n",-ans);
}
return ;
}

hdu 3435(KM算法最优匹配)的更多相关文章

  1. hdu 2448(KM算法+SPFA)

    Mining Station on the Sea Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  2. HDU 2255 KM算法 二分图最大权值匹配

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  3. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  4. hdu 4862 KM算法 最小K路径覆盖的模型

    http://acm.hdu.edu.cn/showproblem.php?pid=4862 选t<=k次,t条路要经过全部的点一次而且只一次. 建图是问题: 我自己最初就把n*m 个点分别放入 ...

  5. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. HDU 1533 KM算法(权值最小的最佳匹配)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. HDU 3435 KM A new Graph Game

    和HDU 3488一样的,只不过要判断一下是否有解. #include <iostream> #include <cstdio> #include <cstring> ...

  8. hdu 1853 KM算法

    #include<stdio.h> #include<math.h> #include<string.h> #define N 200 #define inf 99 ...

  9. km算法(二分图最大权匹配)学习

    啦啦啦! KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转 化为求完备匹配的问题的.设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j].在 ...

随机推荐

  1. bzoj1025: [SCOI2009]游戏(DP)

    题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数. 看见这种一脸懵逼的题第一要务当然是简化题意...我们可以发现 ...

  2. 使用C#解析并运行JavaScript代码

    如果想在C#编程中解析并运行JavaScript代码,常见的方式有两种: 利用COM组件“Microsoft Script Control”,可参见:C#使用技巧之调用JS脚本方法一 利用JScrip ...

  3. 解决webstrom 输入法光标不跟随问题

    参考博客地址 https://blog.csdn.net/wang414300980/article/details/79537875 原因是jdk版本问题,下载jdk jbsdk8u152b1036 ...

  4. JavaScript定义类与对象的一些方法

    最近偶然碰到有朋友问我"hoisting"的问题.即在js里所有变量的声明都是置顶的,而赋值则是在之后发生的.可以看看这个例子: 1 var a = 'global'; 2 (fu ...

  5. 如何让浏览器在访问链接时不要带上referer

    function open_without_referrer(link){ document.body.appendChild(document.createElement('iframe')).sr ...

  6. ubuntu下安装golang

    1.安装 sudo apt-get install golang 2.查看go的安装路径 go env 查看 GOROOT="/usr/lib/go-1.6" 3.修改环境变量 e ...

  7. mysql的IFNULL()函数FLOOR(),ROUND()函数

    用法说明 1 IFNULL(expr1,expr2) 如果 expr1 不是 NULL,IFNULL() 返回 expr1,否则它返回 expr2. IFNULL()返回一个数字或字符串值,取决于它被 ...

  8. HDU 3081 最大流+二分

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  9. JavaScript知识递归实现数组中指定后代元素的查找

    描述:要求将下面的数据类型中每个子孙后代id放入一个数组并返回 var arr = [ {"id":28,"text":"公司信息", &q ...

  10. vector基础

    //STL基础 //容器 //vector #include "iostream" #include "cstdio" #include "vecto ...