一、前言

大概几年前搞过一套嵌入式linux上的人脸识别程序,当然人脸识别的核心算法并不是自己开发的,关于人脸识别算法这一块,虽然有众多的开源库可以用,甚至还可以用opencv搞算法训练深度学习之类的,个人认为始终达不到准确度的要求,尤其是人脸比对的准确度,这个需要专业的人脸训练模型才行。目前市面上绝大部分的人脸识别库提供的都是X86的或者安卓ios的库,并没有嵌入式linux的库,估计一方面因为嵌入式linux跑的板子性能比较低,还有一个就是依赖特定编译器,版本众多难以提供,市场也小,所以大部分的厂家都没有提供嵌入式linux的开发包,这个就比较鸡肋,所以很多终端厂家最终弃用linux而选用安卓作为载体系统,这样就可以用上高大上的人脸识别库了,比如萤火虫开发板,RK3288 RK3399等。

记得当时还特意搞了一整套的非常详细的通信协议,产品也初步成型,大概的设备有人脸识别终端、双目门禁、人工访客机、自助访客机、人脸比对服务器等,也试运行了一些小区,效果还行,不过在抗逆光和晚上的情况下效果不是很好,当然这是所有人脸识别设备的通病,必须依赖补光或者调整安装位置增加抗逆光摄像机来处理,这样一来对施工就有要求了增加了复杂度,设备成本也上来了,对于小终端厂商来说,这个要选择一个平衡点才行,只有用户愿意付出对应的成本才提供对应的版本。

通信方式及端口:

  • 客户端和服务端等设备统一提供web访问修改配置,端口6660。
  • 人工访客机客户端与人工访客机服务端通信采用TCP短连接,通信端口6661。
  • 自助访客机客户端与自助访客机服务端通信采用TCP长连接,通信端口6661。
  • 人脸识别比对数据库服务器采用TCP长连接,通信端口6662。
  • 服务端与数据库服务器通信采用TCP长连接,通信端口6666。
  • 数据库服务器下发人脸通行证数据采用TCP短连接,通信端口6667。
  • 电脑PC端下发配置到双目门禁采用TCP短连接,通信端口6668。
  • 双目门禁与数据库服务器通信采用TCP长连接,通信端口6669。
  • 双目门禁电脑客户端升级通信采用TCP短连接,通信端口6670。
  • 检测测试与手机app或者其他客户端通信采用TCP长连接,通信端口6671。

二、功能特点

  1. 支持的功能包括人脸识别、人脸比对、人脸搜索、活体检测等。
  2. 在线版还支持身份证、驾驶证、行驶证、银行卡等识别。
  3. 在线版的协议支持百度、旷视,离线版的支持百度,可定制。
  4. 除了支持X86架构,还支持嵌入式linux比如contex-A9、树莓派等。
  5. 每个功能的执行除了返回结果还返回执行用时时间。
  6. 多线程处理,通过type控制当前处理类型。
  7. 支持单张图片检索相似度最高的图片。
  8. 支持指定目录图片用来生成人脸特征值文件。
  9. 可设置等待处理图片队列中的数量。
  10. 每次执行都有成功或者失败的信号返回。
  11. 人脸搜索的返回结果包含了原图+最大相似度图+相似度等。
  12. 人脸比对同时支持两张图片和两个特征值比对。
  13. 相关功能自定义一套协议用于客户端和服务端,可以通过TCP通信进行交互。
  14. 自定义人脸识别协议非常适用于中心一台服务器,现场若干设备请求的场景。
  15. 每个模块全部是独立的一个类,代码整洁、注释完善。

三、效果图

四、相关站点

  1. 国内站点:https://gitee.com/feiyangqingyun/QWidgetDemo
  2. 国际站点:https://github.com/feiyangqingyun/QWidgetDemo
  3. 个人主页:https://blog.csdn.net/feiyangqingyun
  4. 知乎主页:https://www.zhihu.com/people/feiyangqingyun/
  5. 体验地址:https://blog.csdn.net/feiyangqingyun/article/details/97565652

五、核心代码

void FaceLocalArm::imgToBgr(const QImage &img, quint8 *bgr, int w, int h)
{
for (int i = 0; i < h; ++i) {
const quint8 *scanline = img.scanLine(i);
for (int j = 0; j < w; ++j) {
*bgr++ = scanline[j * 3 + 0];
*bgr++ = scanline[j * 3 + 1];
*bgr++ = scanline[j * 3 + 2];
}
}
} void FaceLocalArm::bgrToYuv(quint8 *yuv, const quint8 *bgr, int w, int h)
{
int b, g, r;
for (int i = 0; i < w * h; ++i) {
b = bgr[3 * i + 0];
g = bgr[3 * i + 1];
r = bgr[3 * i + 2];
yuv[i] = (quint8)((r * 30 + g * 59 + b * 11 + 50) / 100);
}
} void FaceLocalArm::init()
{
//如果已经正常则无需初始化
if (isOk) {
return;
}
#ifdef __arm__
int res = CRface::FaceDetect_Init_ColorReco(sdkPath.toStdString());
if (res != 1) {
qDebug() << TIMEMS << QString("FaceDetect_Init_ColorReco error: %1").arg(res);
} else {
qDebug() << TIMEMS << "FaceDetect_Init_ColorReco ok";
res = CRface::FaceReco_Init_ColorReco(sdkPath.toStdString());
if (res != 1) {
qDebug() << TIMEMS << QString("FaceReco_Init_ColorReco error: %1").arg(res);
} else {
isOk = true;
qDebug() << TIMEMS << "FaceReco_Init_ColorReco ok";
}
} emit sdkInitFinsh(isOk);
#endif
} bool FaceLocalArm::getFaceRect(const QString &flag, const QImage &img, QRect &rect, int &msec)
{
if (!isOk) {
return false;
}
#ifdef __arm__
//qDebug() << TIMEMS << flag << "getFaceRect"; QTime time;
if (countTime) {
time.start();
} int w = img.width();
int h = img.height(); //这里有隐患,如果图片像素特别大会崩溃,应该改为quint8 *bgr=(quint8 *)calloc(w * h * 3, 1);然后后面free(bgr);
quint8 yuv[w * h];
quint8 bgr[w * h * 3];
imgToBgr(img, bgr, w, h); int facebox[32 * 5];
bgrToYuv(yuv, bgr, w, h);
facebox[0] = 0;
int result = 0;
if (findFast) {
result = CRface::FaceDetect_Fast_ColorReco(yuv, w, h, facebox, true);
} else {
result = CRface::FaceDetect_Normal_ColorReco(yuv, w, h, facebox, true, w / percent);
} if (result == 1) {
rect = QRect(facebox[1], facebox[2], facebox[3], facebox[4]);
msec = getTime(time);
return true;
}
#endif
return false;
} bool FaceLocalArm::getFaceFeature(const QString &flag, const QImage &img, QList<float> &feature, int &msec)
{
if (!isOk) {
return false;
}
#ifdef __arm__
//qDebug() << TIMEMS << flag << "getFaceFeature" << img.width() << img.height() << img.size(); QTime time;
if (countTime) {
time.start();
} int w = img.width();
int h = img.height(); //这里有隐患,如果图片像素特别大会崩溃,应该改为quint8 *bgr=(quint8 *)calloc(w * h * 3, 1);然后后面free(bgr);
quint8 yuv[w * h];
quint8 bgr[w * h * 3];
imgToBgr(img, bgr, w, h); int facebox[32 * 5];
bgrToYuv(yuv, bgr, w, h);
facebox[0] = 0;
int result = 0;
if (findFast) {
result = CRface::FaceDetect_Fast_ColorReco(yuv, w, h, facebox, true);
} else {
result = CRface::FaceDetect_Normal_ColorReco(yuv, w, h, facebox, true, w / percent);
} if (result == 1) {
QRect rect = QRect(facebox[1], facebox[2], facebox[3], facebox[4]);
msec = getTime(time);
emit receiveFaceRect(flag, rect, msec); float fea[256];
int result = CRface::FaceReco_Extract_ColorReco(bgr, w, h, facebox + 1, fea); if (result == 256) {
feature.clear();
for (int i = 0; i < 256; i++) {
feature.append(fea[i]);
} msec = getTime(time);
return true;
}
} else {
emit receiveFaceRectFail(flag);
}
#endif
return false;
} float FaceLocalArm::getFaceCompare(const QString &flag, const QList<float> &feature1, const QList<float> &feature2)
{
if (!isOk) {
return 0;
}
#ifdef __arm__
//qDebug() << TIMEMS << flag << "getFaceCompareXXX"; float fea1[256], fea2[256];
for (int i = 0; i < 256; i++) {
fea1[i] = feature1.at(i);
fea2[i] = feature2.at(i);
} float result = CRface::FaceReco_Match_ColorReco(fea1, fea2);
result = result * 100;
//过滤非法的值
result = result > 100 ? 0 : result;
return result;
#endif return 0;
}

Qt音视频开发41-人脸识别嵌入式的更多相关文章

  1. Android IOS WebRTC 音视频开发总结(八十五)-- 使用WebRTC广播网络摄像头视频(下)

    本文主要介绍WebRTC (我们翻译和整理的,译者:weizhenwei,校验:blacker),最早发表在[编风网] 支持原创,转载必须注明出处,欢迎关注我的微信公众号blacker(微信ID:bl ...

  2. WebRTC 音视频开发

    WebRTC 音视频开发 webrtc   Android IOS WebRTC 音视频开发总结(七八)-- 为什么WebRTC端到端监控很关键? 摘要: 本文主要介绍WebRTC端到端监控(我们翻译 ...

  3. 转:Android IOS WebRTC 音视频开发总结 (系列文章集合)

    随笔分类 - webrtc   Android IOS WebRTC 音视频开发总结(七八)-- 为什么WebRTC端到端监控很关键? 摘要: 本文主要介绍WebRTC端到端监控(我们翻译和整理的,译 ...

  4. Python音视频开发:消除抖音短视频Logo的图形化工具实现

    ☞ ░ 前往老猿Python博文目录 ░ 一.引言 在<Python音视频开发:消除抖音短视频Logo和去电视台标的实现详解>节介绍了怎么通过Python+Moviepy+OpenCV实现 ...

  5. Python音视频开发:消除抖音短视频Logo和去电视台标

    ☞ ░ 前往老猿Python博文目录 ░ 一.引言 对于带Logo(如抖音Logo.电视台标)的视频,有三种方案进行Logo消除: 直接将对应区域用对应图像替换: 直接将对应区域模糊化: 通过变换将要 ...

  6. Moviepy音视频开发:视频转gif动画或jpg图片exe图形化工具开发案例

    ☞ ░ 前往老猿Python博文目录 ░ 一.引言 老猿之所以学习和研究Moviepy的使用,是因为需要一个将视频转成动画的工具,当时在网上到处搜索查找免费使用工具,结果找了很多自称免费的工具,但转完 ...

  7. 【秒懂音视频开发】02_Windows开发环境搭建

    音视频开发库的选择 每个主流平台基本都有自己的音视频开发库(API),用以处理音视频数据,比如: iOS:AVFoundation.AudioUnit等 Android:MediaPlayer.Med ...

  8. Android音视频开发(1):H264 基本原理

    前言 H264 视频压缩算法现在无疑是所有视频压缩技术中使用最广泛,最流行的.随着 x264/openh264 以及 ffmpeg 等开源库的推出,大多数使用者无需再对H264的细节做过多的研究,这大 ...

  9. Android IOS WebRTC 音视频开发总结(八十三)-- 使用WebRTC广播网络摄像头视频(上)

    本文主要介绍WebRTC (我们翻译和整理的,译者:weizhenwei,校验:blacker),最早发表在[编风网] 支持原创,转载必须注明出处,欢迎关注我的微信公众号blacker(微信ID:bl ...

  10. Android IOS WebRTC 音视频开发总结(四六)-- 从另一个角度看国内首届WebRTC大会

    文章主要从开发者角度谈国内首届WebRTC大会,支持原创,文章来自博客园RTC.Blacker,支持原创,转载必须说明出处,更多详见www.rtc.help. -------------------- ...

随机推荐

  1. 博客配套视频已上传至 B 站,欢迎关注

    博客配套视频已上传至 B 站,欢迎关注+一键三连 链接: https://space.bilibili.com/383551518?spm_id_from=333.1007.0.0 b 站直接看 链接 ...

  2. WinSCP 脚本实现将 jar 包一键上传 Ubuntu 并 docker 部署

    准备 首先,在 Ubuntu 写一个.sh 脚本用于自动更新 jar 包的 docker 容器和镜像,然后在 Windows 写一个.bat 脚本用于上传 jar 包并运行.sh 脚本. deploy ...

  3. python将html批量转换为md

    一.安装依赖 pip install html2text 代码实现 import os import shutil import html2text def convert_html2md(src_h ...

  4. CentOS 7.6 内网穿透服务lanproxy部署

    在很多场景下内网穿透都是我们常常遇到的需求,之前也用过花生壳.ngrok.FRP 等等一些工具,但是由于限速.收费.安全各方面因素只好放弃了. 近期无意间看到 「传送门:lanproxy」 这款开源工 ...

  5. 怎么使用云桌面(云电脑)?ToDesk新手入门教程

    在当今数字化时代,个人用户对于电脑性能的需求日益提升,而云电脑(又可称为云桌面)作为一种新型的电脑配备模式,正在逐渐进入人们的视野. 对于很多新手来说,可能是第一次接触到云电脑软件,今天小社长就以To ...

  6. Marklogic学习 系列专栏整理

    Marklogic学习 系列专栏整理 本人就是个松鼠怪,见到好东西都想收藏,在CSDN发现了这位博主写的一系列MarkLogic相关专栏觉得不错,今天已经看到第六个了,反正很好吃,趁着最近项目使用Ma ...

  7. IntelliJ IDEA 2024.1 安装激活 (亲测有效!)

    第一步:下载 IDEA 安装包 访问 IDEA 官网,下载 IDEA 2024.1.4 版本的安装包,下载链接如下 : idea官方链接 也可以在这里点击下载idea下载idea 第二步: 安装 ID ...

  8. 2024ICPC 武汉邀请赛题解 更新至 8 题

    目录 Preface Problem I. 循环苹果串 Problem K. 派对游戏 Problem B. 无数的我 Problem F. 订制服装 Problem E. 回旋镖 Problem D ...

  9. fabric基本使用

    fabric简介 ​ Fabric 是一个 Python 的库,同时它也是一个命令行工具.它提供了丰富的同 SSH 交互的接口,可以用来在本地或远程机器上自动化.流水化地执行 Shell 命令.使用 ...

  10. zkw 线段树-原理及其扩展

    前言 许多算法的本质是统计.线段树用于统计,是沟通原数组与前缀和的桥梁. <统计的力量>清华大学-张昆玮 关于线段树 前置知识:线段树 OIWiki. 线段树是一种专门维护区间问题的数据结 ...