平方 & 立方 & 根号表
平方 & 立方 & 根号表
\(1 \sim 100\) 平方表
| \(n\) | \(n^2\) |
|---|---|
| \(1\) | \(1\) |
| \(2\) | \(4\) |
| \(3\) | \(9\) |
| \(4\) | \(16\) |
| \(5\) | \(25\) |
| \(6\) | \(36\) |
| \(7\) | \(49\) |
| \(8\) | \(64\) |
| \(9\) | \(81\) |
| \(10\) | \(100\) |
| \(11\) | \(121\) |
| \(12\) | \(144\) |
| \(13\) | \(169\) |
| \(14\) | \(196\) |
| \(15\) | \(225\) |
| \(16\) | \(256\) |
| \(17\) | \(289\) |
| \(18\) | \(324\) |
| \(19\) | \(361\) |
| \(20\) | \(400\) |
| \(21\) | \(441\) |
| \(22\) | \(484\) |
| \(23\) | \(529\) |
| \(24\) | \(576\) |
| \(25\) | \(625\) |
| \(26\) | \(676\) |
| \(27\) | \(729\) |
| \(28\) | \(784\) |
| \(29\) | \(841\) |
| \(30\) | \(900\) |
| \(31\) | \(961\) |
| \(32\) | \(1024\) |
| \(33\) | \(1089\) |
| \(34\) | \(1156\) |
| \(35\) | \(1225\) |
| \(36\) | \(1296\) |
| \(37\) | \(1369\) |
| \(38\) | \(1444\) |
| \(39\) | \(1521\) |
| \(40\) | \(1600\) |
| \(41\) | \(1681\) |
| \(42\) | \(1764\) |
| \(43\) | \(1849\) |
| \(44\) | \(1936\) |
| \(45\) | \(2025\) |
| \(46\) | \(2116\) |
| \(47\) | \(2209\) |
| \(48\) | \(2304\) |
| \(49\) | \(2401\) |
| \(50\) | \(2500\) |
| \(51\) | \(2601\) |
| \(52\) | \(2704\) |
| \(53\) | \(2809\) |
| \(54\) | \(2916\) |
| \(55\) | \(3025\) |
| \(56\) | \(3136\) |
| \(57\) | \(3249\) |
| \(58\) | \(3364\) |
| \(59\) | \(3481\) |
| \(60\) | \(3600\) |
| \(61\) | \(3721\) |
| \(62\) | \(3844\) |
| \(63\) | \(3969\) |
| \(64\) | \(4096\) |
| \(65\) | \(4225\) |
| \(66\) | \(4356\) |
| \(67\) | \(4489\) |
| \(68\) | \(4624\) |
| \(69\) | \(4761\) |
| \(70\) | \(4900\) |
| \(71\) | \(5041\) |
| \(72\) | \(5184\) |
| \(73\) | \(5329\) |
| \(74\) | \(5476\) |
| \(75\) | \(5625\) |
| \(76\) | \(5776\) |
| \(77\) | \(5929\) |
| \(78\) | \(6084\) |
| \(79\) | \(6241\) |
| \(80\) | \(6400\) |
| \(81\) | \(6561\) |
| \(82\) | \(6724\) |
| \(83\) | \(6889\) |
| \(84\) | \(7056\) |
| \(85\) | \(7225\) |
| \(86\) | \(7396\) |
| \(87\) | \(7569\) |
| \(88\) | \(7744\) |
| \(89\) | \(7921\) |
| \(90\) | \(8100\) |
| \(91\) | \(8281\) |
| \(92\) | \(8464\) |
| \(93\) | \(8649\) |
| \(94\) | \(8836\) |
| \(95\) | \(9025\) |
| \(96\) | \(9216\) |
| \(97\) | \(9409\) |
| \(98\) | \(9604\) |
| \(99\) | \(9801\) |
| \(100\) | \(10000\) |
\(1 \sim 100\) 立方表
| \(n\) | \(n^3\) |
|---|---|
| \(1\) | \(1\) |
| \(2\) | \(8\) |
| \(3\) | \(27\) |
| \(4\) | \(64\) |
| \(5\) | \(125\) |
| \(6\) | \(216\) |
| \(7\) | \(343\) |
| \(8\) | \(512\) |
| \(9\) | \(729\) |
| \(10\) | \(1000\) |
| \(11\) | \(1331\) |
| \(12\) | \(1728\) |
| \(13\) | \(2197\) |
| \(14\) | \(2744\) |
| \(15\) | \(3375\) |
| \(16\) | \(4096\) |
| \(17\) | \(4913\) |
| \(18\) | \(5832\) |
| \(19\) | \(6859\) |
| \(20\) | \(8000\) |
| \(21\) | \(9261\) |
| \(22\) | \(10648\) |
| \(23\) | \(12167\) |
| \(24\) | \(13824\) |
| \(25\) | \(15625\) |
| \(26\) | \(17576\) |
| \(27\) | \(19683\) |
| \(28\) | \(21952\) |
| \(29\) | \(24389\) |
| \(30\) | \(27000\) |
| \(31\) | \(29791\) |
| \(32\) | \(32768\) |
| \(33\) | \(35937\) |
| \(34\) | \(39304\) |
| \(35\) | \(42875\) |
| \(36\) | \(46656\) |
| \(37\) | \(50653\) |
| \(38\) | \(54872\) |
| \(39\) | \(59319\) |
| \(40\) | \(64000\) |
| \(41\) | \(68921\) |
| \(42\) | \(74088\) |
| \(43\) | \(79507\) |
| \(44\) | \(85184\) |
| \(45\) | \(91125\) |
| \(46\) | \(97336\) |
| \(47\) | \(103823\) |
| \(48\) | \(110592\) |
| \(49\) | \(117649\) |
| \(50\) | \(125000\) |
| \(51\) | \(132651\) |
| \(52\) | \(140608\) |
| \(53\) | \(148877\) |
| \(54\) | \(157464\) |
| \(55\) | \(166375\) |
| \(56\) | \(175616\) |
| \(57\) | \(185193\) |
| \(58\) | \(195112\) |
| \(59\) | \(205379\) |
| \(60\) | \(216000\) |
| \(61\) | \(226981\) |
| \(62\) | \(238328\) |
| \(63\) | \(250047\) |
| \(64\) | \(262144\) |
| \(65\) | \(274625\) |
| \(66\) | \(287496\) |
| \(67\) | \(300763\) |
| \(68\) | \(314432\) |
| \(69\) | \(328509\) |
| \(70\) | \(343000\) |
| \(71\) | \(357911\) |
| \(72\) | \(373248\) |
| \(73\) | \(389017\) |
| \(74\) | \(405224\) |
| \(75\) | \(421875\) |
| \(76\) | \(438976\) |
| \(77\) | \(456533\) |
| \(78\) | \(474552\) |
| \(79\) | \(493039\) |
| \(80\) | \(512000\) |
| \(81\) | \(531441\) |
| \(82\) | \(551368\) |
| \(83\) | \(571787\) |
| \(84\) | \(592704\) |
| \(85\) | \(614125\) |
| \(86\) | \(636056\) |
| \(87\) | \(658503\) |
| \(88\) | \(681472\) |
| \(89\) | \(704969\) |
| \(90\) | \(729000\) |
| \(91\) | \(753571\) |
| \(92\) | \(778688\) |
| \(93\) | \(804357\) |
| \(94\) | \(830584\) |
| \(95\) | \(857375\) |
| \(96\) | \(884736\) |
| \(97\) | \(912673\) |
| \(98\) | \(941192\) |
| \(99\) | \(970299\) |
| \(100\) | \(1000000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-1}\))
| \(n\) | \(\sqrt{n}\) |
|---|---|
| \(1\) | \(1.0\) |
| \(2\) | \(1.4\) |
| \(3\) | \(1.7\) |
| \(4\) | \(2.0\) |
| \(5\) | \(2.2\) |
| \(6\) | \(2.4\) |
| \(7\) | \(2.6\) |
| \(8\) | \(2.8\) |
| \(9\) | \(3.0\) |
| \(10\) | \(3.2\) |
| \(11\) | \(3.3\) |
| \(12\) | \(3.5\) |
| \(13\) | \(3.6\) |
| \(14\) | \(3.7\) |
| \(15\) | \(3.9\) |
| \(16\) | \(4.0\) |
| \(17\) | \(4.1\) |
| \(18\) | \(4.2\) |
| \(19\) | \(4.4\) |
| \(20\) | \(4.5\) |
| \(21\) | \(4.6\) |
| \(22\) | \(4.7\) |
| \(23\) | \(4.8\) |
| \(24\) | \(4.9\) |
| \(25\) | \(5.0\) |
| \(26\) | \(5.1\) |
| \(27\) | \(5.2\) |
| \(28\) | \(5.3\) |
| \(29\) | \(5.4\) |
| \(30\) | \(5.5\) |
| \(31\) | \(5.6\) |
| \(32\) | \(5.7\) |
| \(33\) | \(5.7\) |
| \(34\) | \(5.8\) |
| \(35\) | \(5.9\) |
| \(36\) | \(6.0\) |
| \(37\) | \(6.1\) |
| \(38\) | \(6.2\) |
| \(39\) | \(6.2\) |
| \(40\) | \(6.3\) |
| \(41\) | \(6.4\) |
| \(42\) | \(6.5\) |
| \(43\) | \(6.6\) |
| \(44\) | \(6.6\) |
| \(45\) | \(6.7\) |
| \(46\) | \(6.8\) |
| \(47\) | \(6.9\) |
| \(48\) | \(6.9\) |
| \(49\) | \(7.0\) |
| \(50\) | \(7.1\) |
| \(51\) | \(7.1\) |
| \(52\) | \(7.2\) |
| \(53\) | \(7.3\) |
| \(54\) | \(7.3\) |
| \(55\) | \(7.4\) |
| \(56\) | \(7.5\) |
| \(57\) | \(7.5\) |
| \(58\) | \(7.6\) |
| \(59\) | \(7.7\) |
| \(60\) | \(7.7\) |
| \(61\) | \(7.8\) |
| \(62\) | \(7.9\) |
| \(63\) | \(7.9\) |
| \(64\) | \(8.0\) |
| \(65\) | \(8.1\) |
| \(66\) | \(8.1\) |
| \(67\) | \(8.2\) |
| \(68\) | \(8.2\) |
| \(69\) | \(8.3\) |
| \(70\) | \(8.4\) |
| \(71\) | \(8.4\) |
| \(72\) | \(8.5\) |
| \(73\) | \(8.5\) |
| \(74\) | \(8.6\) |
| \(75\) | \(8.7\) |
| \(76\) | \(8.7\) |
| \(77\) | \(8.8\) |
| \(78\) | \(8.8\) |
| \(79\) | \(8.9\) |
| \(80\) | \(8.9\) |
| \(81\) | \(9.0\) |
| \(82\) | \(9.1\) |
| \(83\) | \(9.1\) |
| \(84\) | \(9.2\) |
| \(85\) | \(9.2\) |
| \(86\) | \(9.3\) |
| \(87\) | \(9.3\) |
| \(88\) | \(9.4\) |
| \(89\) | \(9.4\) |
| \(90\) | \(9.5\) |
| \(91\) | \(9.5\) |
| \(92\) | \(9.6\) |
| \(93\) | \(9.6\) |
| \(94\) | \(9.7\) |
| \(95\) | \(9.7\) |
| \(96\) | \(9.8\) |
| \(97\) | \(9.8\) |
| \(98\) | \(9.9\) |
| \(99\) | \(9.9\) |
| \(100\) | \(10.0\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-2}\))
| \(n\) | \(\sqrt{n}\) |
|---|---|
| \(1\) | \(1.00\) |
| \(2\) | \(1.41\) |
| \(3\) | \(1.73\) |
| \(4\) | \(2.00\) |
| \(5\) | \(2.24\) |
| \(6\) | \(2.45\) |
| \(7\) | \(2.65\) |
| \(8\) | \(2.83\) |
| \(9\) | \(3.00\) |
| \(10\) | \(3.16\) |
| \(11\) | \(3.32\) |
| \(12\) | \(3.46\) |
| \(13\) | \(3.61\) |
| \(14\) | \(3.74\) |
| \(15\) | \(3.87\) |
| \(16\) | \(4.00\) |
| \(17\) | \(4.12\) |
| \(18\) | \(4.24\) |
| \(19\) | \(4.36\) |
| \(20\) | \(4.47\) |
| \(21\) | \(4.58\) |
| \(22\) | \(4.69\) |
| \(23\) | \(4.80\) |
| \(24\) | \(4.90\) |
| \(25\) | \(5.00\) |
| \(26\) | \(5.10\) |
| \(27\) | \(5.20\) |
| \(28\) | \(5.29\) |
| \(29\) | \(5.39\) |
| \(30\) | \(5.48\) |
| \(31\) | \(5.57\) |
| \(32\) | \(5.66\) |
| \(33\) | \(5.74\) |
| \(34\) | \(5.83\) |
| \(35\) | \(5.92\) |
| \(36\) | \(6.00\) |
| \(37\) | \(6.08\) |
| \(38\) | \(6.16\) |
| \(39\) | \(6.24\) |
| \(40\) | \(6.32\) |
| \(41\) | \(6.40\) |
| \(42\) | \(6.48\) |
| \(43\) | \(6.56\) |
| \(44\) | \(6.63\) |
| \(45\) | \(6.71\) |
| \(46\) | \(6.78\) |
| \(47\) | \(6.86\) |
| \(48\) | \(6.93\) |
| \(49\) | \(7.00\) |
| \(50\) | \(7.07\) |
| \(51\) | \(7.14\) |
| \(52\) | \(7.21\) |
| \(53\) | \(7.28\) |
| \(54\) | \(7.35\) |
| \(55\) | \(7.42\) |
| \(56\) | \(7.48\) |
| \(57\) | \(7.55\) |
| \(58\) | \(7.62\) |
| \(59\) | \(7.68\) |
| \(60\) | \(7.75\) |
| \(61\) | \(7.81\) |
| \(62\) | \(7.87\) |
| \(63\) | \(7.94\) |
| \(64\) | \(8.00\) |
| \(65\) | \(8.06\) |
| \(66\) | \(8.12\) |
| \(67\) | \(8.19\) |
| \(68\) | \(8.25\) |
| \(69\) | \(8.31\) |
| \(70\) | \(8.37\) |
| \(71\) | \(8.43\) |
| \(72\) | \(8.49\) |
| \(73\) | \(8.54\) |
| \(74\) | \(8.60\) |
| \(75\) | \(8.66\) |
| \(76\) | \(8.72\) |
| \(77\) | \(8.77\) |
| \(78\) | \(8.83\) |
| \(79\) | \(8.89\) |
| \(80\) | \(8.94\) |
| \(81\) | \(9.00\) |
| \(82\) | \(9.06\) |
| \(83\) | \(9.11\) |
| \(84\) | \(9.17\) |
| \(85\) | \(9.22\) |
| \(86\) | \(9.27\) |
| \(87\) | \(9.33\) |
| \(88\) | \(9.38\) |
| \(89\) | \(9.43\) |
| \(90\) | \(9.49\) |
| \(91\) | \(9.54\) |
| \(92\) | \(9.59\) |
| \(93\) | \(9.64\) |
| \(94\) | \(9.70\) |
| \(95\) | \(9.75\) |
| \(96\) | \(9.80\) |
| \(97\) | \(9.85\) |
| \(98\) | \(9.90\) |
| \(99\) | \(9.95\) |
| \(100\) | \(10.00\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-3}\))
| \(n\) | \(\sqrt{n}\) |
|---|---|
| \(1\) | \(1.000\) |
| \(2\) | \(1.414\) |
| \(3\) | \(1.732\) |
| \(4\) | \(2.000\) |
| \(5\) | \(2.236\) |
| \(6\) | \(2.449\) |
| \(7\) | \(2.646\) |
| \(8\) | \(2.828\) |
| \(9\) | \(3.000\) |
| \(10\) | \(3.162\) |
| \(11\) | \(3.317\) |
| \(12\) | \(3.464\) |
| \(13\) | \(3.606\) |
| \(14\) | \(3.742\) |
| \(15\) | \(3.873\) |
| \(16\) | \(4.000\) |
| \(17\) | \(4.123\) |
| \(18\) | \(4.243\) |
| \(19\) | \(4.359\) |
| \(20\) | \(4.472\) |
| \(21\) | \(4.583\) |
| \(22\) | \(4.690\) |
| \(23\) | \(4.796\) |
| \(24\) | \(4.899\) |
| \(25\) | \(5.000\) |
| \(26\) | \(5.099\) |
| \(27\) | \(5.196\) |
| \(28\) | \(5.292\) |
| \(29\) | \(5.385\) |
| \(30\) | \(5.477\) |
| \(31\) | \(5.568\) |
| \(32\) | \(5.657\) |
| \(33\) | \(5.745\) |
| \(34\) | \(5.831\) |
| \(35\) | \(5.916\) |
| \(36\) | \(6.000\) |
| \(37\) | \(6.083\) |
| \(38\) | \(6.164\) |
| \(39\) | \(6.245\) |
| \(40\) | \(6.325\) |
| \(41\) | \(6.403\) |
| \(42\) | \(6.481\) |
| \(43\) | \(6.557\) |
| \(44\) | \(6.633\) |
| \(45\) | \(6.708\) |
| \(46\) | \(6.782\) |
| \(47\) | \(6.856\) |
| \(48\) | \(6.928\) |
| \(49\) | \(7.000\) |
| \(50\) | \(7.071\) |
| \(51\) | \(7.141\) |
| \(52\) | \(7.211\) |
| \(53\) | \(7.280\) |
| \(54\) | \(7.348\) |
| \(55\) | \(7.416\) |
| \(56\) | \(7.483\) |
| \(57\) | \(7.550\) |
| \(58\) | \(7.616\) |
| \(59\) | \(7.681\) |
| \(60\) | \(7.746\) |
| \(61\) | \(7.810\) |
| \(62\) | \(7.874\) |
| \(63\) | \(7.937\) |
| \(64\) | \(8.000\) |
| \(65\) | \(8.062\) |
| \(66\) | \(8.124\) |
| \(67\) | \(8.185\) |
| \(68\) | \(8.246\) |
| \(69\) | \(8.307\) |
| \(70\) | \(8.367\) |
| \(71\) | \(8.426\) |
| \(72\) | \(8.485\) |
| \(73\) | \(8.544\) |
| \(74\) | \(8.602\) |
| \(75\) | \(8.660\) |
| \(76\) | \(8.718\) |
| \(77\) | \(8.775\) |
| \(78\) | \(8.832\) |
| \(79\) | \(8.888\) |
| \(80\) | \(8.944\) |
| \(81\) | \(9.000\) |
| \(82\) | \(9.055\) |
| \(83\) | \(9.110\) |
| \(84\) | \(9.165\) |
| \(85\) | \(9.220\) |
| \(86\) | \(9.274\) |
| \(87\) | \(9.327\) |
| \(88\) | \(9.381\) |
| \(89\) | \(9.434\) |
| \(90\) | \(9.487\) |
| \(91\) | \(9.539\) |
| \(92\) | \(9.592\) |
| \(93\) | \(9.644\) |
| \(94\) | \(9.695\) |
| \(95\) | \(9.747\) |
| \(96\) | \(9.798\) |
| \(97\) | \(9.849\) |
| \(98\) | \(9.899\) |
| \(99\) | \(9.950\) |
| \(100\) | \(10.000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-4}\))
| \(n\) | \(\sqrt{n}\) |
|---|---|
| \(1\) | \(1.0000\) |
| \(2\) | \(1.4142\) |
| \(3\) | \(1.7321\) |
| \(4\) | \(2.0000\) |
| \(5\) | \(2.2361\) |
| \(6\) | \(2.4495\) |
| \(7\) | \(2.6458\) |
| \(8\) | \(2.8284\) |
| \(9\) | \(3.0000\) |
| \(10\) | \(3.1623\) |
| \(11\) | \(3.3166\) |
| \(12\) | \(3.4641\) |
| \(13\) | \(3.6056\) |
| \(14\) | \(3.7417\) |
| \(15\) | \(3.8730\) |
| \(16\) | \(4.0000\) |
| \(17\) | \(4.1231\) |
| \(18\) | \(4.2426\) |
| \(19\) | \(4.3589\) |
| \(20\) | \(4.4721\) |
| \(21\) | \(4.5826\) |
| \(22\) | \(4.6904\) |
| \(23\) | \(4.7958\) |
| \(24\) | \(4.8990\) |
| \(25\) | \(5.0000\) |
| \(26\) | \(5.0990\) |
| \(27\) | \(5.1962\) |
| \(28\) | \(5.2915\) |
| \(29\) | \(5.3852\) |
| \(30\) | \(5.4772\) |
| \(31\) | \(5.5678\) |
| \(32\) | \(5.6569\) |
| \(33\) | \(5.7446\) |
| \(34\) | \(5.8310\) |
| \(35\) | \(5.9161\) |
| \(36\) | \(6.0000\) |
| \(37\) | \(6.0828\) |
| \(38\) | \(6.1644\) |
| \(39\) | \(6.2450\) |
| \(40\) | \(6.3246\) |
| \(41\) | \(6.4031\) |
| \(42\) | \(6.4807\) |
| \(43\) | \(6.5574\) |
| \(44\) | \(6.6332\) |
| \(45\) | \(6.7082\) |
| \(46\) | \(6.7823\) |
| \(47\) | \(6.8557\) |
| \(48\) | \(6.9282\) |
| \(49\) | \(7.0000\) |
| \(50\) | \(7.0711\) |
| \(51\) | \(7.1414\) |
| \(52\) | \(7.2111\) |
| \(53\) | \(7.2801\) |
| \(54\) | \(7.3485\) |
| \(55\) | \(7.4162\) |
| \(56\) | \(7.4833\) |
| \(57\) | \(7.5498\) |
| \(58\) | \(7.6158\) |
| \(59\) | \(7.6811\) |
| \(60\) | \(7.7460\) |
| \(61\) | \(7.8102\) |
| \(62\) | \(7.8740\) |
| \(63\) | \(7.9373\) |
| \(64\) | \(8.0000\) |
| \(65\) | \(8.0623\) |
| \(66\) | \(8.1240\) |
| \(67\) | \(8.1854\) |
| \(68\) | \(8.2462\) |
| \(69\) | \(8.3066\) |
| \(70\) | \(8.3666\) |
| \(71\) | \(8.4261\) |
| \(72\) | \(8.4853\) |
| \(73\) | \(8.5440\) |
| \(74\) | \(8.6023\) |
| \(75\) | \(8.6603\) |
| \(76\) | \(8.7178\) |
| \(77\) | \(8.7750\) |
| \(78\) | \(8.8318\) |
| \(79\) | \(8.8882\) |
| \(80\) | \(8.9443\) |
| \(81\) | \(9.0000\) |
| \(82\) | \(9.0554\) |
| \(83\) | \(9.1104\) |
| \(84\) | \(9.1652\) |
| \(85\) | \(9.2195\) |
| \(86\) | \(9.2736\) |
| \(87\) | \(9.3274\) |
| \(88\) | \(9.3808\) |
| \(89\) | \(9.4340\) |
| \(90\) | \(9.4868\) |
| \(91\) | \(9.5394\) |
| \(92\) | \(9.5917\) |
| \(93\) | \(9.6437\) |
| \(94\) | \(9.6954\) |
| \(95\) | \(9.7468\) |
| \(96\) | \(9.7980\) |
| \(97\) | \(9.8489\) |
| \(98\) | \(9.8995\) |
| \(99\) | \(9.9499\) |
| \(100\) | \(10.0000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-5}\))
| \(n\) | \(\sqrt{n}\) |
|---|---|
| \(1\) | \(1.00000\) |
| \(2\) | \(1.41421\) |
| \(3\) | \(1.73205\) |
| \(4\) | \(2.00000\) |
| \(5\) | \(2.23607\) |
| \(6\) | \(2.44949\) |
| \(7\) | \(2.64575\) |
| \(8\) | \(2.82843\) |
| \(9\) | \(3.00000\) |
| \(10\) | \(3.16228\) |
| \(11\) | \(3.31662\) |
| \(12\) | \(3.46410\) |
| \(13\) | \(3.60555\) |
| \(14\) | \(3.74166\) |
| \(15\) | \(3.87298\) |
| \(16\) | \(4.00000\) |
| \(17\) | \(4.12311\) |
| \(18\) | \(4.24264\) |
| \(19\) | \(4.35890\) |
| \(20\) | \(4.47214\) |
| \(21\) | \(4.58258\) |
| \(22\) | \(4.69042\) |
| \(23\) | \(4.79583\) |
| \(24\) | \(4.89898\) |
| \(25\) | \(5.00000\) |
| \(26\) | \(5.09902\) |
| \(27\) | \(5.19615\) |
| \(28\) | \(5.29150\) |
| \(29\) | \(5.38516\) |
| \(30\) | \(5.47723\) |
| \(31\) | \(5.56776\) |
| \(32\) | \(5.65685\) |
| \(33\) | \(5.74456\) |
| \(34\) | \(5.83095\) |
| \(35\) | \(5.91608\) |
| \(36\) | \(6.00000\) |
| \(37\) | \(6.08276\) |
| \(38\) | \(6.16441\) |
| \(39\) | \(6.24500\) |
| \(40\) | \(6.32456\) |
| \(41\) | \(6.40312\) |
| \(42\) | \(6.48074\) |
| \(43\) | \(6.55744\) |
| \(44\) | \(6.63325\) |
| \(45\) | \(6.70820\) |
| \(46\) | \(6.78233\) |
| \(47\) | \(6.85565\) |
| \(48\) | \(6.92820\) |
| \(49\) | \(7.00000\) |
| \(50\) | \(7.07107\) |
| \(51\) | \(7.14143\) |
| \(52\) | \(7.21110\) |
| \(53\) | \(7.28011\) |
| \(54\) | \(7.34847\) |
| \(55\) | \(7.41620\) |
| \(56\) | \(7.48331\) |
| \(57\) | \(7.54983\) |
| \(58\) | \(7.61577\) |
| \(59\) | \(7.68115\) |
| \(60\) | \(7.74597\) |
| \(61\) | \(7.81025\) |
| \(62\) | \(7.87401\) |
| \(63\) | \(7.93725\) |
| \(64\) | \(8.00000\) |
| \(65\) | \(8.06226\) |
| \(66\) | \(8.12404\) |
| \(67\) | \(8.18535\) |
| \(68\) | \(8.24621\) |
| \(69\) | \(8.30662\) |
| \(70\) | \(8.36660\) |
| \(71\) | \(8.42615\) |
| \(72\) | \(8.48528\) |
| \(73\) | \(8.54400\) |
| \(74\) | \(8.60233\) |
| \(75\) | \(8.66025\) |
| \(76\) | \(8.71780\) |
| \(77\) | \(8.77496\) |
| \(78\) | \(8.83176\) |
| \(79\) | \(8.88819\) |
| \(80\) | \(8.94427\) |
| \(81\) | \(9.00000\) |
| \(82\) | \(9.05539\) |
| \(83\) | \(9.11043\) |
| \(84\) | \(9.16515\) |
| \(85\) | \(9.21954\) |
| \(86\) | \(9.27362\) |
| \(87\) | \(9.32738\) |
| \(88\) | \(9.38083\) |
| \(89\) | \(9.43398\) |
| \(90\) | \(9.48683\) |
| \(91\) | \(9.53939\) |
| \(92\) | \(9.59166\) |
| \(93\) | \(9.64365\) |
| \(94\) | \(9.69536\) |
| \(95\) | \(9.74679\) |
| \(96\) | \(9.79796\) |
| \(97\) | \(9.84886\) |
| \(98\) | \(9.89949\) |
| \(99\) | \(9.94987\) |
| \(100\) | \(10.00000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-6}\))
| \(n\) | \(\sqrt{n}\) |
|---|---|
| \(1\) | \(1.000000\) |
| \(2\) | \(1.414214\) |
| \(3\) | \(1.732051\) |
| \(4\) | \(2.000000\) |
| \(5\) | \(2.236068\) |
| \(6\) | \(2.449490\) |
| \(7\) | \(2.645751\) |
| \(8\) | \(2.828427\) |
| \(9\) | \(3.000000\) |
| \(10\) | \(3.162278\) |
| \(11\) | \(3.316625\) |
| \(12\) | \(3.464102\) |
| \(13\) | \(3.605551\) |
| \(14\) | \(3.741657\) |
| \(15\) | \(3.872983\) |
| \(16\) | \(4.000000\) |
| \(17\) | \(4.123106\) |
| \(18\) | \(4.242641\) |
| \(19\) | \(4.358899\) |
| \(20\) | \(4.472136\) |
| \(21\) | \(4.582576\) |
| \(22\) | \(4.690416\) |
| \(23\) | \(4.795832\) |
| \(24\) | \(4.898979\) |
| \(25\) | \(5.000000\) |
| \(26\) | \(5.099020\) |
| \(27\) | \(5.196152\) |
| \(28\) | \(5.291503\) |
| \(29\) | \(5.385165\) |
| \(30\) | \(5.477226\) |
| \(31\) | \(5.567764\) |
| \(32\) | \(5.656854\) |
| \(33\) | \(5.744563\) |
| \(34\) | \(5.830952\) |
| \(35\) | \(5.916080\) |
| \(36\) | \(6.000000\) |
| \(37\) | \(6.082763\) |
| \(38\) | \(6.164414\) |
| \(39\) | \(6.244998\) |
| \(40\) | \(6.324555\) |
| \(41\) | \(6.403124\) |
| \(42\) | \(6.480741\) |
| \(43\) | \(6.557439\) |
| \(44\) | \(6.633250\) |
| \(45\) | \(6.708204\) |
| \(46\) | \(6.782330\) |
| \(47\) | \(6.855655\) |
| \(48\) | \(6.928203\) |
| \(49\) | \(7.000000\) |
| \(50\) | \(7.071068\) |
| \(51\) | \(7.141428\) |
| \(52\) | \(7.211103\) |
| \(53\) | \(7.280110\) |
| \(54\) | \(7.348469\) |
| \(55\) | \(7.416198\) |
| \(56\) | \(7.483315\) |
| \(57\) | \(7.549834\) |
| \(58\) | \(7.615773\) |
| \(59\) | \(7.681146\) |
| \(60\) | \(7.745967\) |
| \(61\) | \(7.810250\) |
| \(62\) | \(7.874008\) |
| \(63\) | \(7.937254\) |
| \(64\) | \(8.000000\) |
| \(65\) | \(8.062258\) |
| \(66\) | \(8.124038\) |
| \(67\) | \(8.185353\) |
| \(68\) | \(8.246211\) |
| \(69\) | \(8.306624\) |
| \(70\) | \(8.366600\) |
| \(71\) | \(8.426150\) |
| \(72\) | \(8.485281\) |
| \(73\) | \(8.544004\) |
| \(74\) | \(8.602325\) |
| \(75\) | \(8.660254\) |
| \(76\) | \(8.717798\) |
| \(77\) | \(8.774964\) |
| \(78\) | \(8.831761\) |
| \(79\) | \(8.888194\) |
| \(80\) | \(8.944272\) |
| \(81\) | \(9.000000\) |
| \(82\) | \(9.055385\) |
| \(83\) | \(9.110434\) |
| \(84\) | \(9.165151\) |
| \(85\) | \(9.219544\) |
| \(86\) | \(9.273618\) |
| \(87\) | \(9.327379\) |
| \(88\) | \(9.380832\) |
| \(89\) | \(9.433981\) |
| \(90\) | \(9.486833\) |
| \(91\) | \(9.539392\) |
| \(92\) | \(9.591663\) |
| \(93\) | \(9.643651\) |
| \(94\) | \(9.695360\) |
| \(95\) | \(9.746794\) |
| \(96\) | \(9.797959\) |
| \(97\) | \(9.848858\) |
| \(98\) | \(9.899495\) |
| \(99\) | \(9.949874\) |
| \(100\) | \(10.000000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-7}\))
| \(n\) | \(\sqrt{n}\) |
|---|---|
| \(1\) | \(1.0000000\) |
| \(2\) | \(1.4142136\) |
| \(3\) | \(1.7320508\) |
| \(4\) | \(2.0000000\) |
| \(5\) | \(2.2360680\) |
| \(6\) | \(2.4494897\) |
| \(7\) | \(2.6457513\) |
| \(8\) | \(2.8284271\) |
| \(9\) | \(3.0000000\) |
| \(10\) | \(3.1622777\) |
| \(11\) | \(3.3166248\) |
| \(12\) | \(3.4641016\) |
| \(13\) | \(3.6055513\) |
| \(14\) | \(3.7416574\) |
| \(15\) | \(3.8729833\) |
| \(16\) | \(4.0000000\) |
| \(17\) | \(4.1231056\) |
| \(18\) | \(4.2426407\) |
| \(19\) | \(4.3588989\) |
| \(20\) | \(4.4721360\) |
| \(21\) | \(4.5825757\) |
| \(22\) | \(4.6904158\) |
| \(23\) | \(4.7958315\) |
| \(24\) | \(4.8989795\) |
| \(25\) | \(5.0000000\) |
| \(26\) | \(5.0990195\) |
| \(27\) | \(5.1961524\) |
| \(28\) | \(5.2915026\) |
| \(29\) | \(5.3851648\) |
| \(30\) | \(5.4772256\) |
| \(31\) | \(5.5677644\) |
| \(32\) | \(5.6568542\) |
| \(33\) | \(5.7445626\) |
| \(34\) | \(5.8309519\) |
| \(35\) | \(5.9160798\) |
| \(36\) | \(6.0000000\) |
| \(37\) | \(6.0827625\) |
| \(38\) | \(6.1644140\) |
| \(39\) | \(6.2449980\) |
| \(40\) | \(6.3245553\) |
| \(41\) | \(6.4031242\) |
| \(42\) | \(6.4807407\) |
| \(43\) | \(6.5574385\) |
| \(44\) | \(6.6332496\) |
| \(45\) | \(6.7082039\) |
| \(46\) | \(6.7823300\) |
| \(47\) | \(6.8556546\) |
| \(48\) | \(6.9282032\) |
| \(49\) | \(7.0000000\) |
| \(50\) | \(7.0710678\) |
| \(51\) | \(7.1414284\) |
| \(52\) | \(7.2111026\) |
| \(53\) | \(7.2801099\) |
| \(54\) | \(7.3484692\) |
| \(55\) | \(7.4161985\) |
| \(56\) | \(7.4833148\) |
| \(57\) | \(7.5498344\) |
| \(58\) | \(7.6157731\) |
| \(59\) | \(7.6811457\) |
| \(60\) | \(7.7459667\) |
| \(61\) | \(7.8102497\) |
| \(62\) | \(7.8740079\) |
| \(63\) | \(7.9372539\) |
| \(64\) | \(8.0000000\) |
| \(65\) | \(8.0622577\) |
| \(66\) | \(8.1240384\) |
| \(67\) | \(8.1853528\) |
| \(68\) | \(8.2462113\) |
| \(69\) | \(8.3066239\) |
| \(70\) | \(8.3666003\) |
| \(71\) | \(8.4261498\) |
| \(72\) | \(8.4852814\) |
| \(73\) | \(8.5440037\) |
| \(74\) | \(8.6023253\) |
| \(75\) | \(8.6602540\) |
| \(76\) | \(8.7177979\) |
| \(77\) | \(8.7749644\) |
| \(78\) | \(8.8317609\) |
| \(79\) | \(8.8881944\) |
| \(80\) | \(8.9442719\) |
| \(81\) | \(9.0000000\) |
| \(82\) | \(9.0553851\) |
| \(83\) | \(9.1104336\) |
| \(84\) | \(9.1651514\) |
| \(85\) | \(9.2195445\) |
| \(86\) | \(9.2736185\) |
| \(87\) | \(9.3273791\) |
| \(88\) | \(9.3808315\) |
| \(89\) | \(9.4339811\) |
| \(90\) | \(9.4868330\) |
| \(91\) | \(9.5393920\) |
| \(92\) | \(9.5916630\) |
| \(93\) | \(9.6436508\) |
| \(94\) | \(9.6953597\) |
| \(95\) | \(9.7467943\) |
| \(96\) | \(9.7979590\) |
| \(97\) | \(9.8488578\) |
| \(98\) | \(9.8994949\) |
| \(99\) | \(9.9498744\) |
| \(100\) | \(10.0000000\) |
\(1 \sim 100\) 根号表(\(eps = 10^{-8}\))
| \(n\) | \(\sqrt{n}\) |
|---|---|
| \(1\) | \(1.00000000\) |
| \(2\) | \(1.41421356\) |
| \(3\) | \(1.73205081\) |
| \(4\) | \(2.00000000\) |
| \(5\) | \(2.23606798\) |
| \(6\) | \(2.44948974\) |
| \(7\) | \(2.64575131\) |
| \(8\) | \(2.82842712\) |
| \(9\) | \(3.00000000\) |
| \(10\) | \(3.16227766\) |
| \(11\) | \(3.31662479\) |
| \(12\) | \(3.46410162\) |
| \(13\) | \(3.60555128\) |
| \(14\) | \(3.74165739\) |
| \(15\) | \(3.87298335\) |
| \(16\) | \(4.00000000\) |
| \(17\) | \(4.12310563\) |
| \(18\) | \(4.24264069\) |
| \(19\) | \(4.35889894\) |
| \(20\) | \(4.47213595\) |
| \(21\) | \(4.58257569\) |
| \(22\) | \(4.69041576\) |
| \(23\) | \(4.79583152\) |
| \(24\) | \(4.89897949\) |
| \(25\) | \(5.00000000\) |
| \(26\) | \(5.09901951\) |
| \(27\) | \(5.19615242\) |
| \(28\) | \(5.29150262\) |
| \(29\) | \(5.38516481\) |
| \(30\) | \(5.47722558\) |
| \(31\) | \(5.56776436\) |
| \(32\) | \(5.65685425\) |
| \(33\) | \(5.74456265\) |
| \(34\) | \(5.83095189\) |
| \(35\) | \(5.91607978\) |
| \(36\) | \(6.00000000\) |
| \(37\) | \(6.08276253\) |
| \(38\) | \(6.16441400\) |
| \(39\) | \(6.24499800\) |
| \(40\) | \(6.32455532\) |
| \(41\) | \(6.40312424\) |
| \(42\) | \(6.48074070\) |
| \(43\) | \(6.55743852\) |
| \(44\) | \(6.63324958\) |
| \(45\) | \(6.70820393\) |
| \(46\) | \(6.78232998\) |
| \(47\) | \(6.85565460\) |
| \(48\) | \(6.92820323\) |
| \(49\) | \(7.00000000\) |
| \(50\) | \(7.07106781\) |
| \(51\) | \(7.14142843\) |
| \(52\) | \(7.21110255\) |
| \(53\) | \(7.28010989\) |
| \(54\) | \(7.34846923\) |
| \(55\) | \(7.41619849\) |
| \(56\) | \(7.48331477\) |
| \(57\) | \(7.54983444\) |
| \(58\) | \(7.61577311\) |
| \(59\) | \(7.68114575\) |
| \(60\) | \(7.74596669\) |
| \(61\) | \(7.81024968\) |
| \(62\) | \(7.87400787\) |
| \(63\) | \(7.93725393\) |
| \(64\) | \(8.00000000\) |
| \(65\) | \(8.06225775\) |
| \(66\) | \(8.12403840\) |
| \(67\) | \(8.18535277\) |
| \(68\) | \(8.24621125\) |
| \(69\) | \(8.30662386\) |
| \(70\) | \(8.36660027\) |
| \(71\) | \(8.42614977\) |
| \(72\) | \(8.48528137\) |
| \(73\) | \(8.54400375\) |
| \(74\) | \(8.60232527\) |
| \(75\) | \(8.66025404\) |
| \(76\) | \(8.71779789\) |
| \(77\) | \(8.77496439\) |
| \(78\) | \(8.83176087\) |
| \(79\) | \(8.88819442\) |
| \(80\) | \(8.94427191\) |
| \(81\) | \(9.00000000\) |
| \(82\) | \(9.05538514\) |
| \(83\) | \(9.11043358\) |
| \(84\) | \(9.16515139\) |
| \(85\) | \(9.21954446\) |
| \(86\) | \(9.27361850\) |
| \(87\) | \(9.32737905\) |
| \(88\) | \(9.38083152\) |
| \(89\) | \(9.43398113\) |
| \(90\) | \(9.48683298\) |
| \(91\) | \(9.53939201\) |
| \(92\) | \(9.59166305\) |
| \(93\) | \(9.64365076\) |
| \(94\) | \(9.69535971\) |
| \(95\) | \(9.74679434\) |
| \(96\) | \(9.79795897\) |
| \(97\) | \(9.84885780\) |
| \(98\) | \(9.89949494\) |
| \(99\) | \(9.94987437\) |
| \(100\) | \(10.00000000\) |
平方 & 立方 & 根号表的更多相关文章
- 探索性数据分析EDA综述
目录 1. 数据探索的步骤和准备 2. 缺失值处理 为什么需要处理缺失值 Why data has missing values? 缺失值处理的技术 3. 异常值检测和处理 What is an ou ...
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- Machine Learning - 第7周(Support Vector Machines)
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 ...
- Repeater控件的详细用法
中隔行(交替项)呈现一次.通过设置 AlternatingItemTemplate 元素的样式属性,可以为其指定不同的外观. FooterTemplate在所有数据绑定行呈现之后呈现一次的元素.典型的 ...
- Python3 输入和输出
输出格式美化 Python两种输出值的方式: 表达式语句和 print() 函数.(第三种方式是使用文件对象的 write() 方法; 标准输出文件可以用 sys.stdout 引用.) 如果你希望输 ...
- Python输出格式全总结
输入输出 有几种方法可以显示程序的输出:数据可以以人类可读的形式打印出来,或者写入文件以供将来使用.本章将讨论一些可能性. 更漂亮的输出格式 到目前为止,我们遇到了两种写入值的方法:表达式语句 和 p ...
- c primer plus(五版)编程练习-第六章编程练习
1.编写一个程序,创建一个具有26 个元素的数组,并在其中存储26 个小写字母.并让该程序显示该数组的内容. #include<stdio.h> #define SIZE 26 int m ...
- python 输入输出,file, os模块
Python 输入和输出 输出格式美化 Python两种输出值的方式: 表达式语句和 print() 函数. 第三种方式是使用文件对象的 write() 方法,标准输出文件可以用 sys.stdout ...
- 内核中的多点触摸协议文档 Multi【转】
转自:http://www.arm9home.net/read.php?tid=24754 前段时间改写了一个GT801的内核驱动,仔细阅读 MT Event 上报的时候,发现这个驱动是针对 Andr ...
- Summary—【base】(HTML)
Html知识点: 1. 建议开发人员计算机基本配置 a) 显示所有文件的后缀名* b) 文件的排列方式改为详细信息,并且名称一定要能够全部显示出来 c) 使用小的任务栏 d) 将常用的工具锁定到任务栏 ...
随机推荐
- symfony Fatal error: Declaration of App\DataFixtures\AppFixtures::load(Doctrine\Common\Persistence
报错: Fatal error: Declaration of App\DataFixtures\AppFixtures::load(Doctrine\Common\Persistence\Objec ...
- quartz——Corn表达式
摘录:quartz Cron表达式一分钟教程 - 简书 (jianshu.com) Quartz学习之Cron表达式详解_five-five的博客-CSDN博客_quartz cron表达式 每隔5秒 ...
- 深度解析Maven版本仲裁机制:核心规则与原理
结论先行 Maven的版本仲裁机制本质是通过 依赖路径 和 声明顺序 的优先级规则,自动解决多版本依赖冲突.其核心规则为: 最短路径优先:依赖树中路径最短的版本生效. 相同路径则先声明优先:路径长度相 ...
- Navicat Premiun已经停止工作
与网易有道词典冲突.退出词典即可.
- 【HUST】网络攻防实践|6_物联网设备固件安全实验|flag2~5速通指南
写在最前:最近没空写报告,实验原理虽然已经摸清了但是没空写.flag2到4是一些大胆的想法的通关方式,flag5是正经通关的.之后写报告的时候会补发正经的实验原理,和flag2到4正常的通关方式. 记 ...
- 创建字符串对象的六种方法(java)
package javaBasic; public class StringConstruction { public static void main(String[] args) { String ...
- 推荐一个kafka可视化客户端GUI工具(Kafka King)
Kafka King,比较新,只需要填写kafka连接地址就行,不需要什么zookeeper. 支持的功能也多: 查看集群节点列表(完成) 创建主题(支持批量).删除主题.支持根据消费者组统计每个to ...
- vue中使用swiper 插件出错问题
由于我自己在写一个demo时候用到了该插件,出现了一些问题,所以就简单查了一下该插件的用法以及一些常见的错误 1.出现Get .../maps/swiper.min.js.map 500(Intern ...
- 航空货运系统总结性Blog
前言 本次题目集以航空运送货物为背景,设计航空货物管理系统,主要考察对类设计的把握是否合理还有对继承和多态的使用,能否设计出符合标准的类,是否充分理解对面向对象六大设计原则(SRP,OCP,LSP,D ...
- 企业AI应用模式解析:从本地部署到混合架构
在人工智能快速发展的今天,企业如何选择合适的大模型应用方式成为了一个关键问题.本文将详细介绍六种主流的企业AI应用模式,帮助您根据自身需求做出最优选择. 1. 本地部署(On-Premise Depl ...