数据清洗是数据科学和数据分析中非常重要的一个步骤。它指的是在数据分析之前,对数据进行预处理,以确保数据的质量和一致性。使用Python的pandas库进行数据清洗是一种常见的做法,因为pandas提供了丰富的数据操作和清洗功能。

1.导入需要的库

import pandas as pd
from pandas import DataFrame
import numpy as np

2.处理丢失数据

  • 有两种丢失数据:

    • None
    • np.nan(NaN)
  • 为什么在数据分析中需要用到的是浮点类型的空而不是对象类型?

    • 数据分析中会常常使用某些形式的运算来处理原始数据,如果原数数据中的空值为NAN的形式,则不会干扰或者中断运算。
    • NAN可以参与运算的
    • None是不可以参与运算
df = DataFrame(data=np.random.randint(0,100,size=(7,5)))
df.iloc[2,3] = None
df.iloc[4,2] = np.nan
df.iloc[5,4] = None
df

运行结果为:

3.pandas处理空值操作

  • isnull
  • notnull
  • any
  • all
  • dropna
  • filln
#哪些行中有空值
#any(axis=1)检测哪些行中存有空值
df.isnull().any(axis=1) #any会作用isnull返回结果的每一行
#true对应的行就是存有缺失数据的行

运行结果:

df.notnull()
df.notnull().all(axis=1)
#将布尔值作为源数据的行索引
df.loc[df.notnull().all(axis=1)]
#获取空对应的行数据
df.loc[df.isnull().any(axis=1)]
#获取空对应行数据的行索引
indexs = df.loc[df.isnull().any(axis=1)].index
indexs
df.drop(labels=indexs,axis=0)

3.案例分析

  • 数据说明:

    • 数据是1个冷库的温度数据,1-7对应7个温度采集设备,1分钟采集一次。
  • 数据处理目标:

    • 用1-4对应的4个必须设备,通过建立冷库的温度场关系模型,预估出5-7对应的数据。
    • 最后每个冷库中仅需放置4个设备,取代放置7个设备。
    • f(1-4) --> y(5-7)
  • 数据处理过程:

    • 1、原始数据中有丢帧现象,需要做预处理;
    • 2、matplotlib 绘图;
    • 3、建立逻辑回归模型。
  • 无标准答案,按个人理解操作即可,请把自己的操作过程以文字形式简单描述一下,谢谢配合。

  • 测试数据为testData.xlsx

data = pd.read_excel('./data/testData.xlsx').drop(labels=['none','none1'],axis=1)
data

运行结果为:

data.shape
#删除空对应的行数据
data.dropna(axis=0).shape
df = DataFrame(data=np.random.randint(0,100,size=(8,6)))
df.iloc[1] = [1,1,1,1,1,1]
df.iloc[3] = [1,1,1,1,1,1]
df.iloc[5] = [1,1,1,1,1,1]
df
#检测哪些行存有重复的数据
df.duplicated(keep='first')
df.loc[~df.duplicated(keep='first')]
#异步到位删除
df.drop_duplicates(keep='first')
df = DataFrame(data=np.random.random(size=(1000,3)),columns=['A','B','C'])
df.head()
#制定判定异常值的条件
twice_std = df['C'].std() * 2
twice_std
df.loc[~(df['C'] > twice_std)]

运行结果:

基于pandas的数据清洗的更多相关文章

  1. 数据分析03 /基于pandas的数据清洗、级联、合并

    数据分析03 /基于pandas的数据清洗.级联.合并 目录 数据分析03 /基于pandas的数据清洗.级联.合并 1. 处理丢失的数据 2. pandas处理空值操作 3. 数据清洗案例 4. 处 ...

  2. 基于pandas python的美团某商家的评论销售数据分析(可视化)

    基于pandas python的美团某商家的评论销售数据分析 第一篇 数据初步的统计 本文是该可视化系列的第二篇 第三篇 数据中的评论数据用于自然语言处理 导入相关库 from pyecharts i ...

  3. 【转载】使用pandas进行数据清洗

    使用pandas进行数据清洗 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的 ...

  4. python – 基于pandas中的列中的值从DataFrame中选择行

    如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看 ...

  5. 用pandas进行数据清洗(二)(Data Analysis Pandas Data Munging/Wrangling)

    在<用pandas进行数据清洗(一)(Data Analysis Pandas Data Munging/Wrangling)>中,我们介绍了数据清洗经常用到的一些pandas命令. 接下 ...

  6. 数据分析04 /基于pandas的DateFrame进行股票分析、双均线策略制定

    数据分析04 /基于pandas的DateFrame进行股票分析.双均线策略制定 目录 数据分析04 /基于pandas的DateFrame进行股票分析.双均线策略制定 需求1:对茅台股票分析 需求2 ...

  7. pandas 之 数据清洗-缺失值

    Abstract During the course fo doing data analysis and modeling, a significant amount of time is spen ...

  8. 数据分析---用pandas进行数据清洗(Data Analysis Pandas Data Munging/Wrangling)

    这里利用ben的项目(https://github.com/ben519/DataWrangling/blob/master/Python/README.md),在此基础上增添了一些内容,来演示数据清 ...

  9. 基于pandas python的美团某商家的评论销售(数据分析)

    数据初步的分析 本文是该系列的第一篇 数据清洗 数据初步的统计 第二篇 数据可视化 第三篇 数据中的评论数据用于自然语言处理 from pyecharts import Bar,Pie import ...

  10. 使用pandas进行数据清洗

    本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的空值/缺失值 isnull() ...

随机推荐

  1. 【转载】 深度学习——Xavier初始化方法

    版权声明:本文为CSDN博主「shuzfan」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/shuzfan/a ...

  2. Visual Studio 个人配置和插件

    主题和字体 一般为黑色深色主题,看起来比较舒服. 字体使用Fira Code,好处就是它把 =>和!=换成更加熟悉的表示.就比如以下.缺点就是习惯之后,看别人的代码就不习惯. 插件 当然是首推R ...

  3. 恭喜又一白鲸开源成员成为 Apache SeaTunnel PMC Member

    个人简介 王海林 白鲸开源研发工程师 GitHub ID:hailin0 做过性能监控.数据开发平台等,目前聚焦在数据集成同步及其周边生态的研发 问:作为白鲸开源的一员,您为社区做出过哪些贡献?具体方 ...

  4. MFC制作带界面的DLL库

    ## MFC如何创建一个带界面的DLL(动态链接库) 1.创建项目 打开VS,文件->新建->项目: 点击确定之后弹出来的界面,点击下一步->选择"使用共享MFC DLL的 ...

  5. Linux库概念,动态库和静态库的制作,如何移植第三方库

    一.什么是库? 在windows平台和linux平台下都大量存在着库.一般是软件作者为了发布方便.替换方便或二次开发目的,而发布的一组可以单独与应用程序进行compile time或runtime链接 ...

  6. WCF实例管理

    实例管理是对WCF使用的一系列技术的总称,通过它可以将客户端的请求绑定到服务实例上,并根据客户端请求的类型以确定服务实例的管理方式.由于应用程序在可扩展,性能,吞吐量,事物与对垒调用等方面存在巨大的差 ...

  7. docker启动一个不停止的centos系统容器

    启动的镜像后加上/usr/sbin/init ,前提是镜像中没有设置entrypoint

  8. Json Number Format 异常 Expected an int but was 2168520652 at line 1 column 325

    某变量声明为Integer类型,报json 转换异常 超出了Integer的最大值2147483647, 将类型修改为BigInteger即可,BigInteger:支持任意精度的整数 写Bean时, ...

  9. Html 使用scss爆红

      使用     <style  lang="less" scoped> </style>   即可      

  10. 《花100块做个摸鱼小网站! 》第五篇—通过xxl-job定时获取热搜数据

    ️基础链接导航️ 服务器 → ️ 阿里云活动地址 看样例 → 摸鱼小网站地址 学代码 → 源码库地址 一.前言 我们已经成功实现了一个完整的热搜组件,从后端到前端,构建了这个小网站的核心功能.接下来, ...