1004: [HNOI2008]Cards

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2928  Solved: 1754
[Submit][Status][Discuss]

Description

  小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

  第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

Output

  不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

  有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG

和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

【题解】

染色法就相当于置换,要求的洗牌法就相当于等价类的个数。

那么根据burnside定理,ans就是每种置换下不动点的数目的和除以m

然而这道题关于颜色有限制,那么我们可以用f[i][j][k]表示用了i种颜色1,j种颜色2,k种颜色3的相同的方案数,b[h]表示循环节的长度,那么可以得到f[i][j][k]=f[i-d[h]][j][k]+f[i][j-d[h]][k]+f[i][j][k-d[h]]

求出ans之后,由于计算出的ans是取模后的结果,然后要除以m,然后。。。乘法逆元解决。

最后别忘了,除了题上给出的置换外,还有一个固定的置换,就是自身的置换。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
int sr,sb,sg,m,n,mod,ans,a[][],b[],f[][][],d[];
inline int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x;
}
int dp(int x)
{
for(int i=;i<=n;i++) b[i]=;
int sum=,p=;
for(int i=;i<=n;i++)
if(!b[i])
{
p=i; b[p]=; d[++sum]=;
while(!b[a[x][p]])
{
b[a[x][p]]=;
d[sum]++;
p=a[x][p];
}
}
for(int i=sr;i>=;i--)
for(int j=sb;j>=;j--)
for(int k=sg;k>=;k--)
f[i][j][k]=;
f[][][]=;
for(int h=;h<=sum;h++)
for(int i=sr;i>=;i--)
for(int j=sb;j>=;j--)
for(int k=sg;k>=;k--)
{
if(i>=d[h]) f[i][j][k]=(f[i][j][k]+f[i-d[h]][j][k])%mod;
if(j>=d[h]) f[i][j][k]=(f[i][j][k]+f[i][j-d[h]][k])%mod;
if(k>=d[h]) f[i][j][k]=(f[i][j][k]+f[i][j][k-d[h]])%mod;
}
return f[sr][sb][sg];
}
void exgcd(int a,int b,int &x,int &y)
{
if(b==) {x=; y=; return;}
exgcd(b,a%b,x,y);
int t=x; x=y; y=t-a/b*y;
}
int main()
{
sr=read(); sb=read(); sg=read(); m=read(); mod=read();
n=sr+sb+sg;
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
a[i][j]=read();
m++;
for(int i=;i<=n;i++) a[m][i]=i;
for(int i=;i<=m;i++) ans=(ans+dp(i))%mod;
int x,y;
exgcd(m,mod,x,y);
while(x<) x+=mod;
printf("%d\n",ans*x%mod);
return ;
}

【bzoj1004】[HNOI2008]Cards的更多相关文章

  1. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  2. 【bzoj1004】 HNOI2008—Cards

    http://www.lydsy.com/JudgeOnline/problem.php?id=1004 (题目链接) 题意 n张卡片,染成3种颜色,每种颜色只能染固定张数.给出一些洗牌方案,问染色方 ...

  3. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  4. 【BZOJ1004】Cards(组合数学,Burnside引理)

    [BZOJ1004]Cards(组合数学,Burnside引理) 题面 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Su ...

  5. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  6. 【BZOJ1009】[HNOI2008]GT考试 next数组+矩阵乘法

    [BZOJ1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的 ...

  7. 【bzoj1009】: [HNOI2008]GT考试 字符串-kmp-矩阵乘法-DP

    [bzoj1009]: [HNOI2008]GT考试 先用kmp写个暴力 /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> # ...

  8. 【BZOJ1007】[HNOI2008]水平可见直线 半平面交

    [BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见 ...

  9. 【BZOJ 1004】 [HNOI2008]Cards

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 [题意] 给你sr+sb+sg张牌,(令n=sr+sb+sg),让你把这n张牌染 ...

随机推荐

  1. apache和IIS共享80端口问题

    使用apache代理功能和IIS共享80端口的解决办法. 第一步:把iis所发布的网站默认端口由80改为8080: 第二步:修改apache的httpd.conf配置文件.  首先,要让apache支 ...

  2. android获取com.android.internal.R

    使用class.jar, layout.jar可以直接导入com.android.internal.R 但是有个方法获取不到值mDatePicker.findViewById(com.android. ...

  3. 倒水问题 (codevs 1226) 题解

    [问题描述] 有两个无刻度标志的水壶,分别可装x升和y升 ( x,y 为整数且均不大于100)的水.设另有一水缸,可用来向水壶灌水或接从水壶中倒出的水, 两水壶间,水也可以相互倾倒.已知x升壶为空壶, ...

  4. C# A窗口内容显示在B窗口中的方法

    HeScripts script = new HeScripts(); //A窗口中实例化B窗口 string okscripts = "test"; //设置字段内容 scrip ...

  5. C#发送邮件源码

    介绍 SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式.SMTP协议属于TCP/IP协议 ...

  6. Asp.net Form登陆认证的回顾学习

    asp.net网站中,我最常用的就是Form认证了,在实现登陆时,利用Form认证实现用户的访问权限,哪些页面是可以匿名登陆,哪些页面需要认证后才能访问,哪些页面不能访问等等权限.我还可在登陆时,使用 ...

  7. 009-python基础-数据类型-列表和元组

    一.列表 在python中叫"列表",其他语言中成为"数组" 元素中可以存储字符串.数字甚至变量. 元素索引顺序从0开始. 例如 name_list[0] 就是 ...

  8. 社保系列11《ATR》

    1)  冷复位(Cold Reset) 当IC卡的电源电压和其他信号从静止状态中复苏且申请复位信号时,IC卡产生的复位. 2)  热复位(Warm Reset) 在时钟(CLK)和电源电压(VCC)处 ...

  9. .NET开源工作流RoadFlow-流程设计-流转条件设置(路由)

    当一个步骤后面有多个步骤时,可以设置为根据设置条件系统自动判断该流向哪些步骤,也叫路由. roadflow没有单独的路由步骤来设置条件,流程条件通过双击连线弹出条件设置框来设置. 1.sql条件 即通 ...

  10. 微软CRM解决医药企业串货之痛

    没有准确.及时的流向数据统计和分析,医药企业营销部门就无法有效管理串货泛滥问题,串货会造成渠道无利可赚,挫伤渠道的积极性,产品无人愿意卖,最终伤害的还是医药企业. 医药企业营销发展的不同阶段对串货的态 ...