【bzoj1004】[HNOI2008]Cards
1004: [HNOI2008]Cards
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2928 Solved: 1754
[Submit][Status][Discuss]
Description
小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有
多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方
案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.
两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗
成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).
Input
第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。
接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,
表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。
Output
不同染法除以P的余数
Sample Input
2 3 1
3 1 2
Sample Output
HINT
有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG
和GRB。
100%数据满足 Max{Sr,Sb,Sg}<=20。
【题解】
染色法就相当于置换,要求的洗牌法就相当于等价类的个数。
那么根据burnside定理,ans就是每种置换下不动点的数目的和除以m
然而这道题关于颜色有限制,那么我们可以用f[i][j][k]表示用了i种颜色1,j种颜色2,k种颜色3的相同的方案数,b[h]表示循环节的长度,那么可以得到f[i][j][k]=f[i-d[h]][j][k]+f[i][j-d[h]][k]+f[i][j][k-d[h]]
求出ans之后,由于计算出的ans是取模后的结果,然后要除以m,然后。。。乘法逆元解决。
最后别忘了,除了题上给出的置换外,还有一个固定的置换,就是自身的置换。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
int sr,sb,sg,m,n,mod,ans,a[][],b[],f[][][],d[];
inline int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x;
}
int dp(int x)
{
for(int i=;i<=n;i++) b[i]=;
int sum=,p=;
for(int i=;i<=n;i++)
if(!b[i])
{
p=i; b[p]=; d[++sum]=;
while(!b[a[x][p]])
{
b[a[x][p]]=;
d[sum]++;
p=a[x][p];
}
}
for(int i=sr;i>=;i--)
for(int j=sb;j>=;j--)
for(int k=sg;k>=;k--)
f[i][j][k]=;
f[][][]=;
for(int h=;h<=sum;h++)
for(int i=sr;i>=;i--)
for(int j=sb;j>=;j--)
for(int k=sg;k>=;k--)
{
if(i>=d[h]) f[i][j][k]=(f[i][j][k]+f[i-d[h]][j][k])%mod;
if(j>=d[h]) f[i][j][k]=(f[i][j][k]+f[i][j-d[h]][k])%mod;
if(k>=d[h]) f[i][j][k]=(f[i][j][k]+f[i][j][k-d[h]])%mod;
}
return f[sr][sb][sg];
}
void exgcd(int a,int b,int &x,int &y)
{
if(b==) {x=; y=; return;}
exgcd(b,a%b,x,y);
int t=x; x=y; y=t-a/b*y;
}
int main()
{
sr=read(); sb=read(); sg=read(); m=read(); mod=read();
n=sr+sb+sg;
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
a[i][j]=read();
m++;
for(int i=;i<=n;i++) a[m][i]=i;
for(int i=;i<=m;i++) ans=(ans+dp(i))%mod;
int x,y;
exgcd(m,mod,x,y);
while(x<) x+=mod;
printf("%d\n",ans*x%mod);
return ;
}
【bzoj1004】[HNOI2008]Cards的更多相关文章
- 【BZOJ1004】[HNOI2008]Cards Burnside引理
[BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...
- 【bzoj1004】 HNOI2008—Cards
http://www.lydsy.com/JudgeOnline/problem.php?id=1004 (题目链接) 题意 n张卡片,染成3种颜色,每种颜色只能染固定张数.给出一些洗牌方案,问染色方 ...
- 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...
- 【BZOJ1004】Cards(组合数学,Burnside引理)
[BZOJ1004]Cards(组合数学,Burnside引理) 题面 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Su ...
- 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)
[BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...
- 【BZOJ1009】[HNOI2008]GT考试 next数组+矩阵乘法
[BZOJ1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的 ...
- 【bzoj1009】: [HNOI2008]GT考试 字符串-kmp-矩阵乘法-DP
[bzoj1009]: [HNOI2008]GT考试 先用kmp写个暴力 /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> # ...
- 【BZOJ1007】[HNOI2008]水平可见直线 半平面交
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见 ...
- 【BZOJ 1004】 [HNOI2008]Cards
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 [题意] 给你sr+sb+sg张牌,(令n=sr+sb+sg),让你把这n张牌染 ...
随机推荐
- Tomcat工作原理
http://www.cnblogs.com/shootercheng/p/5838645.html
- ElasticSearch.js
ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Apach ...
- Python脚本控制的WebDriver 常用操作 <二> 关闭浏览器
下面将模拟一个WebDriver关闭浏览器的操作 测试用例场景 在一个自动化测试脚本运行完毕后,我们很可能会采取关闭浏览器的操作,而关闭浏览器的常用操作有如下两种: close quit close ...
- python-抓取图片
今天看到博客园一个文章,python抓取图片,也没看内容,心想自己也写一个抓取脚本试试看,一方面自己也在学习python,另一方面毕竟实际工作也经常会遇到这种需要临时写脚本的时候,突击锻炼还是好的嘛. ...
- C# 页面抓取获取快递信息
通过页面抓取信息可以获得很多我们想要的信息,比如现在常会用到的快递查询,主要抓取的网站为http://www.kuaidi100.com/ 通过IE的网络分析我们可以得到下面信息 通过对这个网站的分析 ...
- Google Chrome浏览器各版本直接下载地址
Google Chrome浏览器各版本直接下载地址 2012.04.12珍藏软件 10161 Views 0 Comments 现在所用的主浏览器Google Chrome,在其官方主页上默认只 ...
- Spring框架中的IOC和DI的区别
上次面试被问到IOC和DI的区别时,没怎么在意,昨天又被问到,感觉有点可惜.今晚总算抽点时间,查看了spring官方文档.发现,IoC更像是一种思想,DI是一种行为.为了降低程序的耦合度,利用spri ...
- 使用ImageLoader实现图片异步加载
注:下面使用的是包:1.8.4,其他版本包的,DisplayImageOptions defaultOptions和 ImageLoaderConfiguration config2配置不一样,请看官 ...
- 使用 PHP cURL 提交 JSON 数据
http://www.oschina.net/code/snippet_54100_7351 http://www.lornajane.net/posts/2011/posting-json-data ...
- asp.net web.config 经典模式和集成模式相关配置
<?xml version="1.0"?> <configuration> <!--IIS经典模式下使用--> <system.web&g ...