题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1976

题意:给出一个n*n*n的立方体。每个小单位为字母P或者字母N。相邻两个小单位字母不同则总价值加1。现在有些小单位的字母已经确定,合理安排其他小单位的字母使得总价值最大?

思路:显然,若所有小单位都未确定,则进 行黑白染色即PN相间的安排时价值最大。基于这样的考虑,我们将所有小单位分成黑白两种颜色,设为A和B。显然同一种颜色之间是不会相邻的。设S集合为A 集合中的P(就是已经给出的)和B集合中的N,T集合为A集合中的N和B集合中的P,并且与ST的流量为INF。然后相邻的小单位之间连边,并记录边的数 量ans,那么ans减去最小割即是答案。为什么呢?显然,若原来给出的没有一个NP,则最小割为0,那么答案就是边的数量。有了一些NP,那么割边不会 是与ST的连边(因为这些边流量为INF),因此割边就是原来相邻小单位的边,而割到了这些边就相当于是这两个小单位染色相同,因此答案减去1,也就是每 有一个这样的割边答案就减去1。因此减去所有割就是答案。最小割决定答案最大。

struct node
{
    int v,cap,next;
};

node edges[N];
int head[N],e;

void add(int u,int v,int cap)
{
    edges[e].v=v;
    edges[e].cap=cap;
    edges[e].next=head[u];
    head[u]=e++;
}

void Add(int u,int v,int cap)
{
    add(u,v,cap);
    add(v,u,0);
}

int pre[N],cur[N],num[N],h[N];

int Maxflow(int s,int t,int n)
{
    int i;
    for(i=0;i<=n;i++) cur[i]=head[i],num[i]=h[i]=0;
    int u=s,Min,k,v;
    int ans=0;
    while(h[u]<n)
    {
        if(u==t)
        {
            Min=INF;
            for(i=s;i!=t;i=edges[cur[i]].v)
            {
                k=cur[i];
                if(edges[k].cap<Min) Min=edges[k].cap,v=i;
            }
            ans+=Min; u=v;
            for(i=s;i!=t;i=edges[cur[i]].v)
            {
                k=cur[i];
                edges[k].cap-=Min;
                edges[k^1].cap+=Min;
            }
        }
        for(i=cur[u];i!=-1;i=edges[i].next)
        {
            if(edges[i].cap>0&&h[u]==h[edges[i].v]+1) break;
        }
        if(i!=-1)
        {
            cur[u]=i;
            pre[edges[i].v]=u;
            u=edges[i].v;
        }
        else
        {
            if(--num[h[u]]==0) break;
            k=n;
            cur[u]=head[u];
            for(i=head[u];i!=-1;i=edges[i].next)
            {
                if(edges[i].cap>0&&h[edges[i].v]<k)
                {
                    k=h[edges[i].v];
                }
            }
            num[k+1]++;
            h[u]=k+1;
            if(u!=s) u=pre[u];
        }
    }
    return ans;
}

int n,m,a[45][45][45];
int dx[]={1,0,0,-1,0,0};
int dy[]={0,1,0,0,-1,0};
int dz[]={0,0,1,0,0,-1};
char s[45][45][45];

int ok(int x)
{
    return x&1;
}

int main()
{
    RD(n);
    int i,j,k,r=0;
    FOR1(i,n) FOR1(j,n) FOR1(k,n) a[i][j][k]=++r;
    int S=0,T=n*n*n+1;
    clr(head,-1);
    int x,y,z,ans=0;
    FOR1(i,n) FOR1(j,n) RD(s[i][j]+1);
    FOR1(i,n) FOR1(j,n) FOR1(k,n)
    {
        FOR0(r,6)
        {
            x=i+dx[r];
            y=j+dy[r];
            z=k+dz[r];
            if(x>=1&&x<=n&&y>=1&&y<=n&&z>=1&&z<=n)
            {
                ans++;
                Add(a[i][j][k],a[x][y][z],1);
            }
        }
        if(s[i][j][k]!='?')
        {
            if(ok(i+j+k)&&s[i][j][k]=='P'||!ok(i+j+k)&&s[i][j][k]=='N')
            {
                Add(S,a[i][j][k],INF);
            }
            else Add(a[i][j][k],T,INF);
        }
    }
    ans>>=1;
    ans-=Maxflow(S,T,T+1);
    PR(ans);
}

BZOJ 1976 能量魔方 Cube(最小割)的更多相关文章

  1. Bzoj 1976: [BeiJing2010组队]能量魔方 Cube 最小割,最大流

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 879  Solved: 304[Submi ...

  2. 【BZOJ-1976】能量魔方Cube 最小割 + 黑白染色

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 884  Solved: 307[Submi ...

  3. 【BZOJ1976】[BeiJing2010组队]能量魔方 Cube 最小割

    [BZOJ1976][BeiJing2010组队]能量魔方 Cube Description 小C 有一个能量魔方,这个魔方可神奇了,只要按照特定方式,放入不同的 能量水晶,就可以产生巨大的能量. 能 ...

  4. BZOJ1976: [BeiJing2010组队]能量魔方 Cube

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 832  Solved: 281[Submi ...

  5. 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割

    题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...

  6. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  7. [BZOJ 3894] 文理分科 【最小割】

    题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...

  8. BZOJ 2039 人员雇佣 二元关系 最小割

    题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...

  9. BZOJ 2007 海拔(平面图最小割-最短路)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...

随机推荐

  1. clock gating and PLL

    一个gating的clock是指:clock network除了包含inverter和buffer外,还有其他logic. PrimeTime会自动的对gating input进行setup和hold ...

  2. 20道C#练习题(一)1——10题

    1.输入三个整数,xyz,最终以从小到大的方式输出.利用if嵌套. Console.Write("请输入x="); double x = double.Parse(Console. ...

  3. ubuntu遇到的命令

    sudo passwd root这个命令是给root用户设定密码.su root切换到root用户.sudo cp 文件 /var/www移动文件到一个目录unzip xxx.zip解压zip文件mk ...

  4. SQL Server 数据查询 整理

    一.使用SELECT检索数据 数据查询是SQL语言的中心内容,SELECT 语句的作用是让数据库服务器根据客户要求检索出所需要的信息资料,并按照规定的格式进行整理,返回给客户端. SELECT 语句的 ...

  5. struts2 18拦截器详解(七)

    ChainingInterceptor 该拦截器处于defaultStack第六的位置,其主要功能是复制值栈(ValueStack)中的所有对象的所有属性到当前正在执行的Action中,如果说Valu ...

  6. V4L2应用程序框架-二【转】

    本文转载自:http://blog.csdn.net/tommy_wxie/article/details/11371439 V4L2驱动框架 主设备号: 81 次设备号:    0-63    64 ...

  7. 错误代码:ERR_UNSAFE_PORT

    修改下应用的端口为7788就好了:http://localhost:7788/taiping-sol-insu-vehicle/vehicleEntrance.action. 这个主要是chrome的 ...

  8. tcpproxy:基于 Swoole 实现的 TCP 数据包转发工具的方法

    假设我们希望有一台机器A(ip 192.168.1.101)要开放端口6379给用户访问,但可能实际情况是用户无法直接访问到A(ip 192.168.1.101), 但却有一台机器B(ip 192.1 ...

  9. HDU 3487:Play with Chain(Splay)

    http://acm.hdu.edu.cn/showproblem.php?pid=3487 题意:有两种操作:1.Flip l r ,把 l 到 r 这段区间 reverse.2.Cut a b c ...

  10. Android Studio解决unspecified on project app resolves to an APK archive which is not supported

    出现该问题unspecified on project app resolves to an APK archive which is not supported as a compilation d ...