3. Model Representation I

1

神经网络是在模仿大脑中的神经元或者神经网络时发明的。因此,要解释如何表示模型假设,我们不妨先来看单个神经元在大脑中是什么样的。

我们的大脑中充满了如上图所示的这样的神经元,神经元是大脑中的细胞。其中有两点值得我们注意,一是神经元有像这样的细胞主体(Nucleus),二是神经元有一定数量的输入神经和输出神经。这些输入神经叫做树突(Dendrite),可以把它们想象成输入电线,它们接收来自其他神经元的信息。神经元的输出神经叫做轴突(Axon),这些输出神经是用来给其他神经元传递信号或者传送信息的。

简而言之,神经元是一个计算单元,它从输入神经接受一定数目的信息,并做一些计算,然后将结果通过它的轴突传送到其他节点或者大脑中的其他神经元。

下面是一组神经元的示意图:


神经元利用微弱的电流进行沟通。这些弱电流也称作动作电位,其实就是一些微弱的电流。所以如果神经元想要传递一个消息,它就会就通过它的轴突发送一段微弱电流给其他神经元。

2

上图中,黄色的圆圈就代表了一个神经元,X为输入向量,θ 代表神经元的权重(实际上就是我们之前所说的模型参数),hθ (X)代表激励函数(在神经网络术语中,激励函数只是对类似非线性函数g(z)的另一个术语称呼,g(z)等于1除以1加e的-z次方)。

实际上,你可以这样理解,神经元就是权重θ。

当讲输入送进神经元后,经计算(实际上就是XTθ )会有一个输出,这个输出再送入激励函数中,便得到了神经元的真实输出。

注意:当我们绘制一个神经网络时,当我绘制一个神经网络时,通常我只绘制输入节点 x1、x2、x3等等,但有时也可以增加一个额外的节点 x0 ,这个 x0 节点有时也被称作偏置单位或偏置神经元。但因为 x0 总是等于1,所以有时候,我们会画出它,有时我们不会画出,这要看画出它是否对例子有利。

神经网络就是不同的神经元组合在一起。第一层为输入层,最后一层为输出层,而中间的所有层均为隐藏层。

注意:输入单元x1、x2、x3,再说一次,有时也可以画上额外的节点 x0。同时,这里有3个神经元,我在里面写了a1(2) 、 a2(2)和a3(2) ,然后再次说明,我们可以在这里添加一个a0(2) ,这和 x0 一样,代表一个额外的偏度单元,它的值永远是1(注意:a1(2) 、 a2(2) 和 a3(2) 中计算的是g(XTθ)的值,而a0(2)中存放的就是偏置1)。

如果一个网络在第 j 层有 sj 个单元,在 j+1 层有 sj +1 个单元,那么矩阵 θ(j) 即控制第 j 层到第 j+1 层的映射。

矩阵 θ(j) 的维度为 s(j+1) * (sj+1) ,s(j+1)行, (sj+1) 列。

总之,以上我们的这样一张图,展示了是怎样定义一个人工神经网络的。这个神经网络定义了函数h:从输入 x 到输出 y 的映射。我将这些假设的参数
记为大写的 θ,这样一来不同的 θ,对应了不同的假设,所以我们有不同的函数,比如说从 x 到 y 的映射。

以上就是我们怎么从数学上定义神经网络的假设。

4. Model Representation II

5. Examples and Intuitions I

运用神经网络,解决“与”、“或”的分类问题。

6. Examples and Intuitions II

神经网络还可以用于识别手写数字。

它使用的输入是不同的图像或者说就是一些原始的像素点。第一层计算出一些特征,然后下一层再计算出一些稍复杂的特征,然后是更复杂的特征,然后这些特征实际上被最终传递给最后一层逻辑回归分类器上,使其准确地预测出神经网络“看”到的数字。

以下展示了通过神经网络进行多分类的例子。

机器学习之神经网络模型-下(Neural Networks: Representation)的更多相关文章

  1. Machine Learning - 第4周(Neural Networks: Representation)

    Neural networks is a model inspired by how the brain works. It is widely used today in many applicat ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  3. Stanford机器学习---第四讲. 神经网络的表示 Neural Networks representation

    原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  4. Ng第八课:神经网络表述(Neural Networks: Representation)

    8.1  非线性假设 8.2  神经元和大脑 8.3  模型表示 1 8.4  模型表示 2 8.5  特征和直观理解 1 8.6  样本和直观理解 II 8.7  多类分类 8.1  非线性假设 无 ...

  5. #Week6 Neural Networks : Representation

    一.Non-linear Hypotheses 线性回归和逻辑回归在特征很多时,计算量会很大. 一个简单的三层神经网络模型: \[a_i^{(j)} = \text{"activation& ...

  6. 机器学习(六)--------神经网络(Neural Networks)

    无论是线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时, 计算的负荷会非常大. 比如识别图像,是否是一辆汽车,可能就需要判断太多像素. 这时候就需要神经网络. 神经网络是模拟人类大脑的神经网络, ...

  7. 机器学习之神经网络模型-上(Neural Networks: Representation)

    在这篇文章中,我们一起来讨论一种叫作"神经网络"(Neural Network)的机器学习算法,这也是我硕士阶段的研究方向.我们将首先讨论神经网络的表层结构,在之后再具体讨论神经网 ...

  8. Coursera, Machine Learning, Neural Networks: Representation - week4/5

    Neural Network Motivations 想要拟合一条曲线,在feature 很多的情况下,feature的组合也很多,在现实中不适用,比如在computer vision问题中featu ...

  9. 8、神经网络:表述(Neural Networks: Representation)

    8.1 非线性假设 我们之前学的,无论是线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时,计算的负荷会非常大. 下面是一个例子: 当我们使用x1, x2 的多次项式进行预测时,我们可以应用的很好 ...

随机推荐

  1. hdu 5327 Olympiad

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5327 Olympiad Description You are one of the competit ...

  2. hdu 1718 Rank

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1718 Rank Description Jackson wants to know his rank ...

  3. go again

    Introducation (1)How to organize go code (2)How to develope go package (3)How to use go tool How to ...

  4. golang的函数

    在golang中, 函数是第一类值(first-class object), 即函数可以赋值与被赋值. 换言之, 函数也可以作为ReceiverType, 定义自己的method. 实例: http. ...

  5. SqlBulkCopy与触发器,批量插入表(存在则更新,不存在则插入)

    临时表:Test /****** 对象: Table [dbo].[Test] 脚本日期: 05/10/2013 11:42:07 ******/ SET ANSI_NULLS ON GO SET Q ...

  6. postgresql 连接数

    改文件 postgresql.conf 里的 #max_connections=32 为 max_connections=1024 以及另外相应修改 share_buffer 参数. 执行SELECT ...

  7. Linux rsync 同步

    rsync 是一个快速增量文件传输工具,它可以用于在同一主机备份内部的备分,我们还可以把它作为不同主机网络备份工具之用.本文主要讲述的是如何自架rsync服务器,以实现文件传输.备份和镜像.相对tar ...

  8. R语言 如何为图片添加文字说明(转载)

    转载:(中文翻译者)[http://blog.csdn.net/chen790646223/article/details/49766659] (原文链接)[http://datascienceplu ...

  9. sublime mac快捷键

    ^是control ⌥是option 打开/前往 ⌘T 前往文件 ⌘⌃P 前往项目 ⌘R 前往 method ⌘⇧P 命令提示 ⌃G 前往行 ⌘KB 开关侧栏 ⌃ ` python 控制台 ⌘⇧N 新 ...

  10. C++ this指针详解

       C++this指针操作 在这里总结一下this 指针的相关知识点. 首先,我们都知道类的成员函数可以访问类的数据(限定符只是限定于类外的一些操作,类内的一切对于成员函数来说都是透明的),那么成员 ...