Card Collector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3001    Accepted Submission(s): 1435
Special Judge

Problem Description
In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, for example, if you collect all the 108 people in the famous novel Water Margin, you will win an amazing award.

As a smart boy, you notice that to win the award, you must buy much more snacks than it seems to be. To convince your friends not to waste money any more, you should find the expected number of snacks one should buy to collect a full suit of cards.

 
Input
The first line of each test case contains one integer N (1 <= N <= 20), indicating the number of different cards you need the collect. The second line contains N numbers p1, p2, ..., pN, (p1 + p2 + ... + pN <= 1), indicating the possibility of each card to appear in a bag of snacks.

Note there is at most one card in a bag of snacks. And it is possible that there is nothing in the bag.

 
Output
Output one number for each test case, indicating the expected number of bags to buy to collect all the N different cards.

You will get accepted if the difference between your answer and the standard answer is no more that 10^-4.

 
Sample Input
1
0.1
2
0.1 0.4
 
Sample Output
10.000
10.500
 
Source
 
Recommend
zhoujiaqi2010

求期望

方法一:状压

逆序枚举所有状态 d[i] 表示状态为i时收集完所有卡片的期望步数。

d[i] = 1 + ∑(d[i | (1 << j)] * p[j])(ps: 累加所有走一步会增加新一张卡片的期望步数) + (1 - t) * d[i](ps: t为增加一张新卡片的概率);

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN (1 << 20) double d[MAXN + ];
double p[];
int main()
{
int n;
while(~scanf("%d", &n))
{
memset(d, , sizeof(d));
repu(i, , n) scanf("%lf", &p[i]);
if(( << n) - ) d[( << n) - ] = 0.0;
double t;
for(int i = ( << n) - ; i >= ; i--)
{
d[i] += 1.0;
t = 0.0;
for(int j = ; j < n; j++)
if(!(i & ( << j))) {
d[i] += p[j] * d[i | ( << j)];
t += p[j];
}
d[i] /= t;
}
printf("%.4lf\n", d[]);
} return ;
}

方法二:容斥

设Ai表示取到第i张卡片的期望,Ai = 1 / pi;

由容斥原理得:

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN (1<<20) double p[];
double d[MAXN + ];
int main()
{
int n;
while(~scanf("%d", &n))
{
double re = 0.0;
repu(i, , n) scanf("%lf", &p[i]);
int m = ;
double t = 0.0;
repu(i, , ( << n)) {
m = , t = 0.0;
repu(j, , n) if(i & ( << j)) t += p[j], m++;
if(m & ) re += 1.0 / t;
else re -= 1.0 / t;
}
printf("%.4lf\n", re);
}
return ;
}

Card Collector(HDU 4336)的更多相关文章

  1. HDU 4336:Card Collector(容斥原理)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Special Judge Problem Descriptio ...

  2. HDU 4336 Card Collector 期望dp+状压

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...

  3. HDU 4336 Card Collector(动态规划-概率DP)

    Card Collector Problem Description In your childhood, do you crazy for collecting the beautiful card ...

  4. HDU 4336——Card Collector——————【概率dp】

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. hdu 4336 Card Collector (概率dp+位运算 求期望)

    题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  6. HDOJ 4336 Card Collector

    容斥原理+状压 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  7. hdu4336 Card Collector 状态压缩dp

    Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  8. min-max容斥 hdu 4336 && [BZOJ4036] 按位或

    题解: 之前听说过这个东西但没有学 令$max(S)$表示S中编号最大的元素,$min(S)$表示编号中最小的元素 $$max(S)=\sum{T \in S} {(-1)}^{|T|+1} min( ...

  9. hdu 4336 概率dp + 状压

    hdu 4336 小吃包装袋里面有随机赠送一些有趣的卡片,如今你想收集齐 N 张卡片.每张卡片在食品包装袋里出现的概率是p[i] ( Σp[i] <= 1 ), 问你收集全部卡片所需购买的食品数 ...

随机推荐

  1. jQuery:使用$获取对象后检查该对象是否存在

    注意: 1)即使jQ获取到网页中不存在的元素也不会报错 2)使用$("#tt")形式获取到的永远是对象,即使网页上没有此元素 jQuery检查某个元素在网页上是否存在时,不能使用以 ...

  2. Linux下查看文件权限、修改文件权限的方法

    查看权限命令查看目录的相关权限可以采用命令ls -lD,或者直接用ls -la 如 ls -l www.jb51.net  //这里表示查看www.jb51.net目录 修改权限命令 chmod 77 ...

  3. java中String的常用方法

    java中String的常用方法1.length() 字符串的长度 例:char chars[]={'a','b'.'c'}; String s=new String(chars); int len= ...

  4. Bootstrap的粗体和斜体

    一.粗体 粗体就是给文本加粗,在普通的元素中我们一般通过font-weight设置为bold关键词给文本加粗. 在Bootstrap中,可以使用<b>和<strong>标签让文 ...

  5. Android布局_网格布局GirdLayout

    自Android4.0版本后新增的GirdLayout网格布局(API 14) <?xml version="1.0" encoding="utf-8"? ...

  6. 转!!!Mybatis实现数据的增删改查(CRUD)

    什么是 MyBatis? MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架. MyBatis 消除了几乎所有的 JDBC 代码和参数的手工设置以及对结果集的检索.MyBat ...

  7. git代码提交方式

    https://my.oschina.net/tearlight/blog/193921 <a>github的提交方式      (1)git add .----------------- ...

  8. js倒计时天时分秒[转]

    <script language="JavaScript"> <!-- // function getQueryString(name) { var reg =n ...

  9. 1.2G内存试玩RAMOS_XP

    1.2G内存试玩RAMOS_XP1.为了防止做系统时出现意外,用Bootice把C盘MBR修改为Grub4dos,这样子系统如果失败,可以进入PE重做. 2.进入PE格式化C盘,格式化的时候勾选启用N ...

  10. 抽象类中的抽象方法也是默认public的么(类似于interface)?

    测试下: public abstract class AbstractTest { abstract int printline(); } 在另一个package 设置 public class Ab ...