Book 最短路算法
用HDU2544整理一下最近学的最短路算法
1.Dijkstra算法
原理:集合S表示已经找到最短路径的点,d[]表示当前各点到源点的距离
初始时,集合里面只有源点,当每个点u进入集合S时,用d[u]+w[u][v]更新距离
再重复这个步骤,选取S外所有点中d[]最小的进入集合
直到所有的点都进入S集合
局限性:图的边权必须为正
复杂度:O(V*V),堆优化((E+V)logV)
(1)用邻接矩阵实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
using namespace std; typedef long long LL;
const int INF = (<<)-;
const int mod=;
const int maxn=;
int w[maxn][maxn],d[maxn],used[maxn];
int n,m; void dijkstra(int s){
memset(used,,sizeof(used));
for(int i=;i<=n;i++) d[i]=INF;
d[s]=; for(int k=;k<=n;k++){
int p,m=INF;
for(int i=;i<=n;i++) if(!used[i]&&d[i]<m) m=d[p=i];
used[p]=;
for(int i=;i<=n;i++) d[i]=min(d[i],d[p]+w[p][i]);
}
} int main(){
int a,b,c;
while(scanf("%d %d",&n,&m)!=EOF&&n&&m){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j) w[i][j]=;
else w[i][j]=INF;
}
} for(int i=;i<=m;i++){
scanf("%d %d %d",&a,&b,&c);
w[a][b]=w[b][a]=c;
}
dijkstra();
printf("%d\n",d[n]); }
return ;
}
(2)用邻接表实现
注意记得每次调用dijkstra()时,first[]置为-1
#include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
using namespace std; typedef long long LL;
const int INF = (<<)-;
const int mod=;
const int maxn=;
int d[maxn],used[maxn],firstt[maxn],nextt[maxn];
int n,m,ecnt; struct edge{
int v,cost;
} e[maxn]; void dijkstra(int s){
memset(used,,sizeof(used));
for(int i=;i<=n;i++) d[i]=INF;
d[s]=; for(int k=;k<=n;k++){
int p,m=INF;
for(int i=;i<=n;i++) if(!used[i]&&d[i]<m) m=d[p=i];
used[p]=;
for(int i=firstt[p];i!=-;i=nextt[i]){
int v=e[i].v;
if(d[v]>d[p]+e[i].cost)
d[v]=d[p]+e[i].cost;
}
}
} void addedges(int u,int v,int w){
nextt[++ecnt]=firstt[u];
e[ecnt].v=v;
e[ecnt].cost=w;
firstt[u]=ecnt;
} int main(){
int a,b,c;
while(scanf("%d %d",&n,&m)!=EOF&&n&&m){
ecnt=;
memset(firstt,-,sizeof(firstt)); for(int i=;i<=m;i++){
scanf("%d %d %d",&a,&b,&c);
addedges(a,b,c);
addedges(b,a,c);
}
dijkstra();
printf("%d\n",d[n]);
}
return ;
}
(3)堆(优先队列)优化
参看紫书上的解释,STL中的pair是专门将两个类型捆绑起来的,
而且pair定义了它自己的排序规则,先比较第一维,相等时才比较第二维,所以需要按照(d[i],i)的顺序组合。
#include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
#define MP(a,b) make_pair(a,b)
using namespace std; typedef long long LL;
typedef pair<int,int> pii;
const int INF = (<<)-;
const int mod=;
const int maxn=;
int d[maxn],firstt[maxn],nextt[maxn];
int n,m,ecnt; struct edge{
int v,cost;
friend bool operator < (edge a,edge b){
return a.cost>b.cost;
}
}e[maxn]; void addedges(int u,int v,int c){
nextt[++ecnt]=firstt[u];
e[ecnt].v=v;
e[ecnt].cost=c;
firstt[u]=ecnt;
} void dijkstra(int s){
priority_queue<pii> pq;
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
pq.push(MP(d[s],));
while(!pq.empty()){
pii x=pq.top();pq.pop();
if(d[x.second]<x.first) continue;//当前状态没有现在dis[]数组里面的优,所以不用再继续判断下去
for(int i=firstt[x.second];i!=-;i=nextt[i]){
int v=e[i].v;
if(d[v]>d[x.second]+e[i].cost){
d[v]=d[x.second]+e[i].cost;
pq.push(MP(d[v],v));
}
}
}
} int main(){
int a,b,c;
while(scanf("%d %d",&n,&m)!=EOF&&n&&m){
memset(firstt,-,sizeof(firstt));
ecnt=;
for(int i=;i<=m;i++){
scanf("%d %d %d",&a,&b,&c);
addedges(a,b,c);
addedges(b,a,c);
}
dijkstra();
printf("%d\n",d[n]);
}
return ;
}
(4)用vector存图实现的
#include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
using namespace std; typedef long long LL;
const int INF = (<<)-;
const int mod=;
const int maxn=;
int d[maxn]; typedef struct edge{
int to,distance;
edge(){}
edge(int to,int distance) :to(to),distance(distance){}
};
typedef pair<int,int> P;
vector<edge> G[maxn];
int n,m,k; void dijkstra(int s){ priority_queue<P,vector<P> ,greater<P> > q;
for(int i=;i < n;i++) d[i]=INF;
d[s]=;
q.push(P(,s)); while(!q.empty()){
P p=q.top();q.pop();
int v=p.second;
if(d[v]<p.first) continue;
for(int i=;i<G[v].size();i++){
edge e=G[v][i]; if(d[e.to] > d[v]+e.distance){ d[e.to] = d[v]+e.distance;
q.push(P(d[e.to],e.to));
}
}
}
} int main(){
while(scanf("%d %d",&n,&m)!=EOF){
if(n==&&m==) break;
for(int i=;i<n;i++) G[i].clear();
while(m--){
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
u--;v--;
G[u].push_back(edge(v,w));
G[v].push_back(edge(u,w));
}
dijkstra();
printf("%d\n",d[n-]);
} return ;
}
2.Bellman_Ford算法
原理:对于图G(V,E),Bellman_Ford是对整个图进行V-1次松弛,每次松弛检查每条边,如果d[v]>d[u]+cost,那么则更新d[v]
应用:可以用来判断负环, 如果没有负权回路的话,那么任意两点间的路径最多经过n-2个点,
即最多松弛n-1次,如果有负权回路,那么第n次松弛操作仍然会成功。
复杂度:O(VE)
#include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
using namespace std; typedef long long LL;
const int INF = (<<)-;
const int mod=;
const int maxn=;
int d[maxn];
int n,m,ecnt; struct edge{
int u,v,cost;
} e[maxn]; void addedges(int u,int v,int c){
e[++ecnt].u=u;
e[ecnt].v=v;
e[ecnt].cost=c;
} void Bellman_Ford(int s){
for(int i=;i<=n;i++) d[i]=INF;
d[s]=; for(int i=;i<n;i++){
for(int j=;j<=ecnt;j++){
if(d[e[j].v]>d[e[j].u]+e[j].cost)
d[e[j].v]=d[e[j].u]+e[j].cost;
}
}
} int main(){
int a,b,c;
while(scanf("%d %d",&n,&m)!=EOF&&n&&m){
ecnt=;
for(int i=;i<=m;i++){
scanf("%d %d %d",&a,&b,&c);
addedges(a,b,c);
addedges(b,a,c);
}
Bellman_Ford();
printf("%d\n",d[n]);
}
return ;
}
Book 最短路算法的更多相关文章
- Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)
上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路".本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做&q ...
- Dijkstra最短路算法
Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...
- Floyd最短路算法
Floyd最短路算法 ----转自啊哈磊[坐在马桶上看算法]算法6:只有五行的Floyd最短路算法 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计 ...
- 近十年one-to-one最短路算法研究整理【转】
前言:针对单源最短路算法,目前最经典的思路即标号算法,以Dijkstra算法和Bellman-Ford算法为根本演进了各种优化技术和算法.针对复杂网络,传统的优化思路是在数据结构和双向搜索上做文章,或 ...
- 【啊哈!算法】算法7:Dijkstra最短路算法
上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图 ...
- 【啊哈!算法】算法6:只有五行的Floyd最短路算法
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有 ...
- Comet OJ 热身赛(E题)(处理+最短路算法)
dijkstra 已经提交 已经通过 42.86% Total Submission:189 Total Accepted:81 题目描述 Eagle Jump公司正在开发一款新的游戏.泷本一二三作为 ...
- 【最短路算法】Dijkstra+heap和SPFA的区别
单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...
- 浅谈k短路算法
An Old but Classic Problem 给定一个$n$个点,$m$条边的带正权有向图.给定$s$和$t$,询问$s$到$t$的所有权和为正路径中,第$k$短的长度. Notice 定义两 ...
随机推荐
- doctype声明、浏览器的标准、怪异等模式
doctype 标准(严格)模式(Standards Mode).怪异(混杂)模式(Quirks Mode),如何触发,区分他们有何意义? 触发标准模式 1.加DOCTYPE声明,比如:<!DO ...
- PHP-Java-Bridge的使用(平安银行支付功能专版)
去年做平安银行的时候,用到了PHP-Java-Bridge,后来写了一篇博客记录使用PHP-Java-Bridge的一些心得(连接:http://my.oschina.net/kenblog/blog ...
- c#实现Socket网络编程
命名空间: 在网络环境下,我们最感兴趣的两个命名空间是System.Net和 System.Net.Sockets. System.Net命名空间通常与较高程的操作有关,例如download或uplo ...
- 10个jQuery插件分享
原文:http://www.shejidaren.com/10-jquery-plugins.html blur.js blur.js是一个很有意思的插件,它能实现像WIN7 AERO效果的JS插件, ...
- 用ScriptEngine在java中和javascript交互的例子(JDK6新特性)
package demo7; import java.util.Arrays; import java.util.List; import javax.script.Invocable; import ...
- POJ 3484
Showstopper Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1060 Accepted: 303 Descri ...
- SQL技术内幕-13 SQL优化方法论之分析实例级别的等待
优化方法论的第一步是在实例级别上找出什么类型的等待占用了大部分的等待时间,这可以通过查询动态管理图(DMV,dynamic management view)sys.dm_os_wait_stats 运 ...
- 从idea到ipo
**************************************************************************************************** ...
- SQL 递归查询
WITH B (FATHER,SON,ID,ALLINFO) AS (SELECT RTRIM(LTRIM(CHAR(A.ID)))|| CHAR(ROW_NUMBER() OVER(PARTITIO ...
- copy
拷贝文件,不覆盖重复文件 yes no|cp -i a b