HDU5008 Boring String Problem(后缀数组 + 二分 + 线段树)
题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5008
Description
In this problem, you are given a string s and q queries.
For each query, you should answer that when all distinct substrings of string s were sorted lexicographically, which one is the k-th smallest.
A substring si...j of the string s = a1a2 ...an(1 ≤ i ≤ j ≤ n) is the string aiai+1 ...aj. Two substrings sx...y and sz...w are cosidered to be distinct if sx...y ≠ Sz...w
Input
The input consists of multiple test cases.Please process till EOF.
Each test case begins with a line containing a string s(|s| ≤ 105) with only lowercase letters.
Next line contains a postive integer q(1 ≤ q ≤ 105), the number of questions.
q queries are given in the next q lines. Every line contains an integer v. You should calculate the k by k = (l⊕r⊕v)+1(l, r is the output of previous question, at the beginning of each case l = r = 0, 0 < k < 263, “⊕” denotes exclusive or)
Output
For each test case, output consists of q lines, the i-th line contains two integers l, r which is the answer to the i-th query. (The answer l,r satisfies that sl...r is the k-th smallest and if there are several l,r available, ouput l,r which with the smallest l. If there is no l,r satisfied, output “0 0”. Note that s1...n is the whole string)
Sample Input
aaa
4
0
2
3
5
Sample Output
1 1
1 3
1 2
0 0
分析
题目大概说给一个字符串,将所有不同子串从小到大排序,多次询问,每次询问输出第k个子串是哪个子串。
任何一个子串都是某个后缀的前缀,用后缀数组得到所有后缀的排列,然后对于各个后缀i能贡献出的子串就是len-i-height[i]。
可以通过预处理出前缀和,前缀和记录的是前几个后缀贡献的总子串数目;对于各个询问,在前缀和上二分查找,就能得到所的要子串了。
不过,题目还要求输出子串在原串所表示的区间,并且多个方案的情况下输出字典序最小。
那么,可以先找到一个子串S,然后在后缀数组上面再进行两次二分查找,查找到与S的LCP大于等于S长度的后缀rank上界和下界,上界和下界之间所有的子串都是满足要求的,而为了快速找到这个区间字典序最小,用个线段树RMQ一下即可。
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAXN 111111 int wa[MAXN],wb[MAXN],wv[MAXN],ws[MAXN];
int cmp(int *r,int a,int b,int l){
return r[a]==r[b] && r[a+l]==r[b+l];
}
int sa[MAXN],rnk[MAXN],height[MAXN];
void SA(int *r,int n,int m){
int *x=wa,*y=wb; for(int i=0; i<m; ++i) ws[i]=0;
for(int i=0; i<n; ++i) ++ws[x[i]=r[i]];
for(int i=1; i<m; ++i) ws[i]+=ws[i-1];
for(int i=n-1; i>=0; --i) sa[--ws[x[i]]]=i; int p=1;
for(int j=1; p<n; j<<=1,m=p){
p=0;
for(int i=n-j; i<n; ++i) y[p++]=i;
for(int i=0; i<n; ++i) if(sa[i]>=j) y[p++]=sa[i]-j;
for(int i=0; i<n; ++i) wv[i]=x[y[i]];
for(int i=0; i<m; ++i) ws[i]=0;
for(int i=0; i<n; ++i) ++ws[wv[i]];
for(int i=1; i<m; ++i) ws[i]+=ws[i-1];
for(int i=n-1; i>=0; --i) sa[--ws[wv[i]]]=y[i];
swap(x,y); x[sa[0]]=0; p=1;
for(int i=1; i<n; ++i) x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
} for(int i=1; i<n; ++i) rnk[sa[i]]=i;
int k=0;
for(int i=0; i<n-1; height[rnk[i++]]=k){
if(k) --k;
for(int j=sa[rnk[i]-1]; r[i+k]==r[j+k]; ++k);
}
} int n,st[17][MAXN];
void ST(int *a){
for(int i=1; i<=n; ++i) st[0][i]=a[i];
for(int i=1; i<17; ++i){
for(int j=1; j<=n; ++j){
if(j+(1<<i)-1>n) continue;
st[i][j]=min(st[i-1][j],st[i-1][j+(1<<i-1)]);
}
}
}
int logs[MAXN];
int rmq(int a,int b){
int k=logs[b-a+1];
return min(st[k][a],st[k][b-(1<<k)+1]);
}
int lcp(int a,int b){
if(a==b) return n-sa[a];
return rmq(a+1,b);
} int tree[MAXN<<2],N,x,y;
void update(int i,int j,int k){
if(i==j){
tree[k]=y;
return;
}
int mid=i+j>>1;
if(x<=mid) update(i,mid,k<<1);
else update(mid+1,j,k<<1|1);
tree[k]=min(tree[k<<1],tree[k<<1|1]);
}
int query(int i,int j,int k){
if(x<=i && j<=y){
return tree[k];
}
int mid=i+j>>1,ret=MAXN;
if(x<=mid) ret=min(ret,query(i,mid,k<<1));
if(y>mid) ret=min(ret,query(mid+1,j,k<<1|1));
return ret;
} char str[MAXN];
int a[MAXN]; long long sum[MAXN];
int dis[MAXN]; int main(){
for(int i=1; i<MAXN; ++i){
logs[i]=log2(i)+1e-6;
}
while(~scanf("%s",str)){
n=strlen(str);
for(int i=0; i<n; ++i){
a[i]=str[i]-'a'+1;
}
a[n]=0;
SA(a,n+1,28);
ST(height); memset(tree,127,sizeof(tree));
for(N=1; N<n; N<<=1);
for(int i=1; i<=n; ++i){
x=i; y=sa[i];
update(1,N,1);
} for(int i=1; i<=n; ++i){
sum[i]=n-sa[i]-height[i]+sum[i-1];
dis[i]=height[i];
} int q;
long long v,ansl=0,ansr=0;
scanf("%d",&q);
while(q--){
scanf("%I64d",&v);
long long k=(ansl^ansr^v)+1; if(k>sum[n]){
ansl=0; ansr=0;
puts("0 0");
continue;
} int tmp=lower_bound(sum+1,sum+1+n,k)-sum;
int len=dis[tmp]+k-sum[tmp-1]; int l=1,r=tmp;
while(l<r){
int mid=l+r>>1;
if(lcp(mid,tmp)>=len) r=mid;
else l=mid+1;
}
x=l; l=tmp; r=n;
while(l<r){
int mid=l+r+1>>1;
if(lcp(tmp,mid)>=len) l=mid;
else r=mid-1;
}
y=l; ansl=query(1,N,1)+1; ansr=ansl+len-1;
printf("%I64d %I64d\n",ansl,ansr);
}
}
return 0;
}
HDU5008 Boring String Problem(后缀数组 + 二分 + 线段树)的更多相关文章
- HDU5008 Boring String Problem(后缀数组)
练习一下字符串,做一下这道题. 首先是关于一个字符串有多少不同子串的问题,串由小到大排起序来应该是按照sa[i]的顺序排出来的产生的. 好像abbacd,排序出来的后缀是这样的 1---abbacd ...
- HDU 5008 Boring String Problem(后缀数组+二分)
题目链接 思路 想到了,但是木写对啊....代码 各种bug,写的乱死了.... 输出最靠前的,比较折腾... #include <cstdio> #include <cstring ...
- K-th occurrence HDU - 6704 (后缀数组+二分线段树+主席树)
大意: 给定串s, q个询问(l,r,k), 求子串s[l,r]的第kk次出现位置. 这是一篇很好的题解: https://blog.csdn.net/sdauguanweihong/article/ ...
- [CSP-S模拟测试]:platform(后缀数组+二分+线段树)
题目传送门 题目描述 走过奈何桥有一个名叫望乡台的土台,望乡台有个名曰孟婆的老妇人在卖孟婆汤.一生爱恨情仇,一世浮沉得失,都可以随这碗孟婆汤遗忘得干干净净.现在有$n$碗孟婆汤摆成一排,汤的品种不超过 ...
- HDU - 5008 Boring String Problem (后缀数组+二分法+RMQ)
Problem Description In this problem, you are given a string s and q queries. For each query, you sho ...
- 【BZOJ-4556】字符串 后缀数组+二分+主席树 / 后缀自动机+线段树合并+二分
4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 657 Solved: 274[Su ...
- CF1063F. String Journey(后缀数组+线段树)
题目链接 https://codeforces.com/contest/1063/problem/F 题解 虽然本题有时间复杂度较高但非常好写的做法...... 首先,若答案为 \(k\),则一定存在 ...
- [HEOI2016/TJOI2016]字符串(后缀数组+二分+主席树/后缀自动机+倍增+线段树合并)
后缀数组解法: 先二分最长前缀长度 \(len\),然后从 \(rnk[c]\) 向左右二分 \(l\) 和 \(r\) 使 \([l,r]\) 的 \(height\geq len\),然后在主席树 ...
- 【BZOJ4556】[Tjoi2016&Heoi2016]字符串 后缀数组+二分+主席树+RMQ
[BZOJ4556][Tjoi2016&Heoi2016]字符串 Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一 ...
随机推荐
- Mysql 死锁的详细分析方法
用数据库的时候,偶尔会出现死锁,针对我们的业务系统,出现死锁的直接结果就是系统卡顿.客户找事儿,所以我们也在想尽全力的消除掉数据库的死锁.出现死锁的时候,如果只是想解锁,用show full proc ...
- HTTP协议/RTSP协议/RTMP协议的区别
RTSP. RTMP.HTTP的共同点.区别 共同点: 1:RTSP RTMP HTTP都是在应用应用层. 2: 理论上RTSP RTMPHTTP都可以做直播和点播,但一般做直播用RTSP RTMP, ...
- NYOJ题目1048破门锁
- Jsonp跨域访问原理和实例
>>什么是跨域 出于安全方面的考虑,页面中的JavaScript无法访问其他服务器上的数据,当前域名的js只能读取同域下的窗口属性,即同源策略.而跨域就是通过某些手段来绕过同源策略限制,实 ...
- mxnet环境搭建随记
安装mxnet还是遇到不少麻烦事,现在简单记一下,挖个坑,后续详细补充,打算写一下我的mxnet探索之旅. 更新: 具体安装mxnet,cuda,opencv过程已经补坑——点击进入 不知道为什么,在 ...
- 《AngularJS》5个实例详解Directive(指令)机制
本文整理并扩展了<AngularJS>这本书第六章里面的内容,此书近期即将由电子工业出版社出版,敬请期待口令:Angular 1.一点小说明 指令的作用:实现语义化标签 我们常用的HTML ...
- git push 使用总结
git push命令用于将本地分支的更新,推送到远程主机.它的格式与git pull命令相仿. $ git push <远程主机名> <本地分支名>:<远程分支名> ...
- select * from salgrade for update和select * from salgrade for update nowait区别
1,select * from salgrade for update session1 session2 SQL> delete salgrade where grade=1; 1 row d ...
- 登录成功,拿到token
历尽波折,终于成功登录并拿到了token: - (LoginResultDto *)login:(NSString *)userName andPassword:(NSString *)passwor ...
- 6-04使用SQL语句更新数据
修改数据语法: UPDATTE 表名 SET 列名 =更新值 WHERE 更新条件 1:省略WHERE条件的更新: 更新性别: UPDATE UserInfo SET Gender=1 三行受影响. ...