[转]Hive:简单查询不启用Mapreduce job而启用Fetch task
转自:http://www.iteblog.com/archives/831
如果你想查询某个表的某一列,Hive默认是会启用MapReduce Job来完成这个任务,如下:
hive> SELECT id, money FROM m limit 10;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Cannot run job locally: Input Size (= 235105473) is larger than
hive.exec.mode.local.auto.inputbytes.max (= 134217728)
Starting Job = job_1384246387966_0229, Tracking URL = http://l-datalogm1.data.cn1:9981/proxy/application_1384246387966_0229/ Kill Command = /home/q/hadoop-2.2.0/bin/hadoop job
-kill job_1384246387966_0229
hadoop job information for Stage-1: number of mappers: 1;
number of reducers: 0
2013-11-13 11:35:16,167 Stage-1 map = 0%, reduce = 0%
2013-11-13 11:35:21,327 Stage-1 map = 100%, reduce = 0%,
Cumulative CPU 1.26 sec
2013-11-13 11:35:22,377 Stage-1 map = 100%, reduce = 0%,
Cumulative CPU 1.26 sec
MapReduce Total cumulative CPU time: 1 seconds 260 msec
Ended Job = job_1384246387966_0229
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 1.26 sec
HDFS Read: 8388865 HDFS Write: 60 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 260 msec
OK
1 122
1 185
1 231
1 292
1 316
1 329
1 355
1 356
1 362
1 364
Time taken: 16.802 seconds, Fetched: 10 row(s)
我们都知道,启用MapReduce Job是会消耗系统开销的。对于这个问题,从Hive0.10.0版本开始,对于简单的不需要聚合的类似SELECT <col> from <table> LIMIT n语句,不需要起MapReduce job,直接通过Fetch task获取数据,可以通过下面几种方法实现:
方法一:
hive> set hive.fetch.task.conversion=more;
hive> SELECT id, money FROM m limit 10;
OK
1 122
1 185
1 231
1 292
1 316
1 329
1 355
1 356
1 362
1 364
Time taken: 0.138 seconds, Fetched: 10 row(s)
上面 set hive.fetch.task.conversion=more;开启了Fetch任务,所以对于上述简单的列查询不在启用MapReduce job!
方法二:
bin/hive --hiveconf hive.fetch.task.conversion=more
方法三:
上面的两种方法都可以开启了Fetch任务,但是都是临时起作用的;如果你想一直启用这个功能,可以在${HIVE_HOME}/conf/hive-site.xml里面加入以下配置:
<property>
<name>hive.fetch.task.conversion</name>
<value>more</value>
<description>
Some select queries can be converted to single FETCH task
minimizing latency.Currently the query should be single
sourced not having any subquery and should not have
any aggregations or distincts (which incurrs RS),
lateral views and joins.
1. minimal : SELECT STAR, FILTER on partition columns, LIMIT only
2. more : SELECT, FILTER, LIMIT only (+TABLESAMPLE, virtual columns)
</description>
</property>
这样就可以长期启用Fetch任务了
[转]Hive:简单查询不启用Mapreduce job而启用Fetch task的更多相关文章
- Hive之简单查询不启用MapReduce
假设你想查询某个表的某一列.Hive默认是会启用MapReduce Job来完毕这个任务,例如以下: 01 hive> SELECT id, money FROM m limit 10; 02 ...
- Hive快捷查询:不启用Mapreduce job启用Fetch task
启用MapReduce Job是会消耗系统开销的.对于这个问题,从Hive0.10.0版本开始,对于简单的不需要聚合的类似SELECT <col> from <table> L ...
- Hive快捷查询:不启用Mapreduce job启用Fetch task三种方式介绍
如果查询表的某一列,Hive中默认会启用MapReduce job来完成这个任务,如下: hive>select id,name from m limit 10;--执行时hive会启用MapR ...
- 011-HQL中级1-Hive快捷查询:不启用Mapreduce job启用Fetch task三种方式介绍
如果你想查询某个表的某一列,Hive默认是会启用MapReduce Job来完成这个任务,如下: hive; Total MapReduce jobs Launching Job out since ...
- Hive笔记之Fetch Task
在使用Hive的时候,有时候只是想取表中某个分区的前几条的记录看下数据格式,比如一个很常用的查询: select * from foo where partition_column=bar limit ...
- hive简单的项目实战
解压user.zip [root@hadoop1 test]# unzip user.zip -d /test/bigdatacase/dataset Archive: user.zip inflat ...
- hive数据查询
Fetch task 丢弃了mapreduce的作业的繁重任务,查询方便简单 1.第一种方式 2.linux命令行 3.地3中
- T-SQL简单查询语句
简单查询: 1.最简单查询(查所有数据)select * from 表名: 注:* 代表所有列select * from info 2.查询指定列select code,name from info ...
- MySQL数据库6 -查询基础,简单查询,条件查询,对查询结果排序
一.SELECT语句 SELECT COL1,COL2,....COLn FROM TABLE1,TABLE2,....TABLEn [WHERE CONDITIONS] -- 查询条件 [GROUP ...
随机推荐
- Swift - 2.3的代码到3.0的转变
分享一下学习新语法的技巧:用Xcode8打开自己的Swift2.3的项目,选择Edit->Convert->To Current Swift Syntax- 让Xcode帮我们把Swift ...
- iOS - 直播相关文章
直播相关文章 直播RTMP可用于测试的服务器地址 FFmpeg avdumpformat输出的tbn.tbc.tbr.PAR.DAR的含义 FFmpeg 3.0 计算视频时长 HLS Streamin ...
- React基础语法学习
React主要有如下3个特点: 作为UI(Just the UI) 虚拟DOM(Virtual DOM):这是亮点 是React最重要的一个特性 放进内存 最小更新的视图,差异部分更新 diff算法 ...
- windows服务 2.实时刷新App.config
参考 http://www.cnblogs.com/jeffwongishandsome/archive/2011/04/24/2026381.html http://www.cnblogs.com/ ...
- ARPPING
http://www.tuicool.com/articles/M7B3umj http://lixcto.blog.51cto.com/4834175/1571838/
- DHCP的若干原理解释
转自:http://blog.chinaunix.net/uid-22287947-id-1775641.html 搜罗了几种关于dhcp的原理和过程解释 DHCP(Dynamic Host Conf ...
- 无废话ExtJs 入门教程六[按钮:Button]
无废话ExtJs 入门教程六[按钮:Button] extjs技术交流,欢迎加群(201926085) 继上一节内容,我们在表单里加了个两个按钮“提交”与重置.如下所示代码区的第68行位置, butt ...
- 严重: End event threw exception java.lang.IllegalArgumentException: Can't convert argument: null
堆栈信息: 2014-6-17 10:33:58 org.apache.tomcat.util.digester.Digester endElement 严重: End event threw exc ...
- JS获取form表单的所有输入值
function getFormQueryString(frmID) { var frmID=document.getElementById(frmID); var i,queryString = & ...
- ORA-1461 encountered when generating server alert SMG-3500
Doc ID 461911.1 Patch 6602742 Applies to: Oracle Database - Enterprise Edition - Version 10.2.0.3 an ...