题目

Source

http://acm.hdu.edu.cn/showproblem.php?pid=5726

Description

Give you a sequence of N(N≤100,000) integers : a1,...,an(0<ai≤1000,000,000). There are Q(Q≤100,000) queries. For each query l,r you have to calculate gcd(al,,al+1,...,ar) and count the number of pairs(l′,r′)(1≤l<r≤N)such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar).

Input

The first line of input contains a number T, which stands for the number of test cases you need to solve.

The first line of each case contains a number N, denoting the number of integers.

The second line contains N integers, a1,...,an(0<ai≤1000,000,000).

The third line contains a number Q, denoting the number of queries.

For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries.

Output

For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).

For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs(l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar).

Sample Input

1
5
1 2 4 6 7
4
1 5
2 4
3 4
4 4

Sample Output

Case #1:
1 8
2 4
2 4
6 1

分析

题目大概说给一个包含n个数的序列,多次询问有多少个区间GCD值等于某个区间的gcd值。

任何一个区间不同的GCD个数是log级别的,因为随着右端点向右延伸GCD是单调不增的,而每次递减GCD至少除以2。

考虑固定左端点,最多就nlogn种GCD,可以直接把所有区间GCD值预处理出来,用map存储各种GCD值的个数,查询时直接输出。

具体是这样处理的:枚举左端点,进行若干次二分查找,看当前GCD值最多能延伸到哪儿,进而统计当前GCD值的数量。

而求区间GCD,用ST表,预处理一下,就能在O(1)时间复杂度求出任意区间的gcd了。

代码

#include<cstdio>
#include<cmath>
#include<map>
#include<algorithm>
using namespace std; int gcd(int a,int b){
while(b){
int t=b;
b=a%b;
a=t;
}
return a;
} int n,st[17][111111];
void init(){
for(int i=1; i<17; ++i){
for(int j=1; j<=n; ++j){
if(j+(1<<i)-1>n) continue;
st[i][j]=gcd(st[i-1][j],st[i-1][j+(1<<i-1)]);
}
}
}
int logs[111111];
int query(int a,int b){
int k=logs[b-a+1];
return gcd(st[k][a],st[k][b-(1<<k)+1]);
} int main(){
for(int i=1; i<=100000; ++i){
logs[i]=log2(i)+1e-6;
}
int t;
scanf("%d",&t);
for(int cse=1; cse<=t; ++cse){
scanf("%d",&n);
for(int i=1; i<=n; ++i){
scanf("%d",&st[0][i]);
} init(); map<int,long long> rec;
for(int i=1; i<=n; ++i){
int g=st[0][i],j=i;
while(j<=n){
int l=j,r=n;
while(l<r){
int mid=l+r+1>>1;
if(query(i,mid)==g) l=mid;
else r=mid-1;
}
rec[g]+=(l-j+1);
j=l+1;
g=query(i,j); }
} printf("Case #%d:\n",cse);
int q,a,b;
scanf("%d",&q);
while(q--){
scanf("%d%d",&a,&b);
int g=query(a,b);
printf("%d %lld\n",g,rec[g]);
}
}
return 0;
}

HDU5726 GCD(二分 + ST表)的更多相关文章

  1. BZOJ4556:[TJOI\HEOI2016]字符串(后缀数组,主席树,二分,ST表)

    Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须正确回答这m个问题,才能打开箱 ...

  2. BZOJ3166 [Heoi2013]Alo 【可持久化trie树 + 二分 + ST表】

    题目 Welcome to ALO ( Arithmetic and Logistic Online).这是一个VR MMORPG , 如名字所见,到处充满了数学的谜题. 现在你拥有n颗宝石,每颗宝石 ...

  3. [BZOJ4310] 跳蚤 - 后缀数组,二分,ST表

    [BZOJ4310] 跳蚤 Description 首先,他会把串分成不超过 \(k\) 个子串,然后对于每个子串 \(S\) ,他会从 \(S\) 的所有子串中选择字典序最大的那一个,并在选出来的 ...

  4. Codeforces 359D Pair of Numbers | 二分+ST表+gcd

    题面: 给一个序列,求最长的合法区间,合法被定义为这个序列的gcd=区间最小值 输出最长合法区间个数,r-l长度 接下来输出每个合法区间的左端点 题解: 由于区间gcd满足单调性,所以我们可以二分区间 ...

  5. ZJOI2018 胖 二分 ST表

    原文链接https://www.cnblogs.com/zhouzhendong/p/ZJOI2018Day2T2.html 题目传送门 - BZOJ5308 题目传送门 - LOJ2529 题目传送 ...

  6. BZOJ 5308 [ZJOI2018] Day2T2 胖 | 二分 ST表

    题目链接 LOJ 2529 BZOJ 5308 题解 这么简单的题 为什么考场上我完全想不清楚 = = 对于k个关键点中的每一个关键点\(a\),二分它能一度成为哪些点的最短路起点(显然这些点在一段包 ...

  7. BZOJ3473:字符串(后缀数组,主席树,二分,ST表)

    Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串. Output 一 ...

  8. BZOJ 3230 相似子串 | 后缀数组 二分 ST表

    BZOJ 3230 相似子串 题面 题解 首先我们要知道询问的两个子串的位置. 先正常跑一遍后缀数组并求出height数组. 对于每一个后缀suffix(i),考虑以i开头的子串有多少是之前没有出现过 ...

  9. BZOJ3230 相似子串[后缀数组+二分+st表]

    BZOJ3230 相似子串 给一个串,查询排名i和j的子串longest common suffix和longest common prefix 思路其实还是蛮好想的,就是码起来有点恶心.可以发现后缀 ...

随机推荐

  1. ios waxpatch lua语法

    Wax Lua 使用方法 说一下 Wax 的特点,它支持你在脚本里使用任何 OC 的类,同样也支持你创建一个类. 使用一个类时你会这样使用: 1 2 NSString -- Returns the N ...

  2. [Android Pro] AAR and JAR

    svn status svn log --limit 3 > RELEASE_NOTE.txt cat RELEASE_NOTE.txt pwd project_name_prefix=&quo ...

  3. LNMP平台搭建---Linux系统安装篇

    在互联网网站开发领域,有一个名词,大家一定不陌生,那就是LAMP,经典的Web服务器环境,由Linux+Apache+MySQL+PHP组成,,后来,一个名叫Nginx的Web服务器开源出来了,因其更 ...

  4. C/C++学习笔记----指针的理解

    指针是C/C++编程中的重要概念之一,也是最容易产生困惑并导致程序出错的问题之一.利用指针编程可以表示各种数据结构,通过指针可使用主调函数和被调函数之间共享变量或数据结构,便于实现双向数据通讯:指针能 ...

  5. MVC中Form表单的提交

    概述 Web页面进行Form表单提交是数据提交的一种,在MVC中Form表单提交到服务器.服务端接受Form表单的方式有多种,如果一个Form有2个submit按钮,那后台如何判断是哪个按钮提交的数据 ...

  6. 使用html5 canvas绘制图片

    注意:本文属于<html5 Canvas绘制图形入门详解>系列文章中的一部分.如果你是html5初学者,仅仅阅读本文,可能无法较深入的理解canvas,甚至无法顺畅地通读本文.请点击上述链 ...

  7. Oracle 11g新特性 -- 延迟段

    11gR2之前的版本中,当创建一张表时,会自动分配段空间,这样做有几个弊端: 1. 初始创建表时就需要分配空间,自然会占用一些时间,如果初始化多张表,这种影响就被放大. 2. 如果很多表开始的一段时间 ...

  8. 6-02使用SQL语句向表中插入数据

    插入语句的语法: INSERT INTO 表() VALUES(值列表) 注意事项: 1:每次插入一行数据,不能只插入半行或几列数据. 2:每一个数据值的数据类型.精度和小数位数必须与相应的列匹配. ...

  9. windows64系统中mysql64位绿色安装

    将下载压缩包解压到任意目录 配置安装文件: # For advice on how to change settings please see# http://dev.mysql.com/doc/re ...

  10. 关于Application Insights遥测功能使用【遇到问题】

    简介:Application Insights是微软发布的一个在线服务,可以监测自己的网站应用,进行性能管理以及使用分析. Application Insights功能一开始是出现在Visualstu ...