UOJ34 多项式乘法
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目描述
这是一道模板题。
给你两个多项式,请输出乘起来后的多项式。
输入格式
第一行两个整数 nn 和 mm,分别表示两个多项式的次数。
第二行 n+1n+1 个整数,分别表示第一个多项式的 00 到 nn 次项前的系数。
第三行 m+1m+1 个整数,分别表示第一个多项式的 00 到 mm 次项前的系数。
输出格式
一行 n+m+1n+m+1 个整数,分别表示乘起来后的多项式的 00 到 n+mn+m 次项前的系数。
样例一
input
1 2
1 2
1 2 1
output
1 4 5 2
正解:FFT
解题报告:
FFT模板题
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
typedef long long LL;
typedef complex<double> C;
const int MAXN = 270000;
const double pi = acos(-1);
int n,m;
C a[MAXN],b[MAXN]; inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void fft(C *a,int n,int f){
if(n==1) return ;
C wn(cos(2.0*pi/n),sin(f*2.0*pi/n)),w(1,0),t;
C a0[n>>1],a1[n>>1];
for(int i=0;i<n>>1;i++) a0[i]=a[i<<1],a1[i]=a[i<<1|1];
fft(a0,n>>1,f); fft(a1,n>>1,f);
for(int i=0;i<n>>1;i++,w*=wn) {
t=w*a1[i];
a[i]=a0[i]+t;
a[i+(n>>1)]=a0[i]-t;
}
} inline void work(){
n=getint(); m=getint();
for(int i=0;i<=n;i++) a[i]=getint();
for(int i=0;i<=m;i++) b[i]=getint();
m+=n; for(n=1;n<=m;n<<=1);
fft(a,n,1); fft(b,n,1);
for(int i=0;i<=n;i++) a[i]*=b[i];
fft(a,n,-1);
for(int i=0;i<=m;i++) printf("%d ",int(a[i].real()/n+0.5));
} int main()
{
work();
return 0;
}
UOJ34 多项式乘法的更多相关文章
- UOJ34 多项式乘法(NTT)
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- UOJ34 多项式乘法(非递归版)
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 【Uoj34】多项式乘法(NTT,FFT)
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...
- 【uoj34】 多项式乘法
http://uoj.ac/problem/34 (题目链接) 题意 求两个多项式的乘积 Solution 挂个FFT板子. 细节 FFT因为要满足$n$是$2$的幂,所以注意数组大小. 代码 // ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- [笔记]ACM笔记 - 利用FFT求卷积(求多项式乘法)
卷积 给定向量:, 向量和: 数量积(内积.点积): 卷积:,其中 例如: 卷积的最典型的应用就是多项式乘法(多项式乘法就是求卷积).以下就用多项式乘法来描述.举例卷积与DFT. 关于多项式 对于多项 ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- 【learning】多项式乘法&fft
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...
- 多项式乘法(FFT)学习笔记
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法 ...
随机推荐
- EMV内核使用中的常见问题
EMV内核在使用上会由于调用不当引起的许多问题,本文旨在基于内核LOG(也就是与IC卡交互的指令LOG)的基础上,对一些常见问题作初步的分析与解答,方便不熟悉EMV规范的同学参考. 本文的前提是你已经 ...
- 微软分布式云计算框架Orleans(1):Hello World
自从写了RabbitHub框架系列后的一段时间内一直在思索更加轻量简便,分布式高并发的框架(RabbitHub学习成本较高),无意间在网上级联看到了很多新框架:从helios到Akka.NET在到Or ...
- 无法将分支 master 发布到远程 origin,因为远程存储库中已存在具有同一名称的分支
无法将分支 master 发布到远程 origin,因为远程存储库中已存在具有同一名称的分支.发布此分支将导致远程存储库中的分支发生非快进更新. 第一次用oschina的git设置完远程仓库后提交出现 ...
- Web Api通过Route、RoutePrefix等特性设置路由
[Route("customers/{customerId}/orders")] [HttpGet] public IEnumerable<Order> FindOrd ...
- Web软件安全攻击
- [转]acm忠告
多做难题 如果你去问那些牛人“这道题你是怎么想到要用XXX方法的”,我估计大部分人都说不出个所以然来.其实很多情况下都是纯凭直觉考虑到的数个思维方向,这种直觉是需要大量的练习来得到的,没有那么多“为什 ...
- python内置数据类型-字典和列表的排序 python BIT sort——dict and list
python中字典按键或键值排序(我转!) 一.字典排序 在程序中使用字典进行数据信息统计时,由于字典是无序的所以打印字典时内容也是无序的.因此,为了使统计得到的结果更方便查看需要进行排序. Py ...
- 一键系统优化15项脚本,适用于Centos6.x
#!/bin/sh ################################################ #Author:nulige # qqinfo:1034611705 # Date ...
- 转 漫谈linux文件IO
在Linux 开发中,有几个关系到性能的东西,技术人员非常关注:进程,CPU,MEM,网络IO,磁盘IO.本篇文件打算详细全面,深入浅出.剖析文件IO的细节.从多个角度探索如何提高IO性能.本文尽量用 ...
- supervisor program配置实例
program 配置 上面我们已经把 supervisrod 运行起来了,现在可以添加我们要管理的进程的配置文件.可以把所有配置项都写到 supervisord.conf 文件里,但并不推荐这样做,而 ...