NOIP2003 神经网络
题目背景
人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。
题目描述
在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子:

神经元〔编号为1)
图中,X1―X3是信息输入渠道,Y1-Y2是信息输出渠道,C1表示神经元目前的状态,Ui是阈值,可视为神经元的一个内在参数。
神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经无分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。

兰兰规定,Ci服从公式:(其中n是网络中所有神经元的数目)

公式中的Wji(可能为负值)表示连接j号神经元和 i号神经元的边的权值。当 Ci大于0时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为Ci。
如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态(Ci),要求你的程序运算出最后网络输出层的状态。
输入输出格式
输入格式:
输入文件第一行是两个整数n(1≤n≤100)和p。接下来n行,每行两个整数,第i+1行是神经元i最初状态和其阈值(Ui),非输入层的神经元开始时状态必然为0。再下面P行,每行由两个整数i,j及一个整数Wij,表示连接神经元i、j的边权值为Wij。
输出格式:
输出文件包含若干行,每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。仅输出最后状态大于零的输出层神经元状态,并且按照编号由小到大顺序输出!
若输出层的神经元最后状态均为 0,则输出 NULL。
输入输出样例
宽搜
#include<stdio.h>
using namespace std;
bool vis[],flag;
int n,m,net[][],f[],u[],q[],c[],s,t=;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%d%d",&f[i],&u[i]);
if(f[i])
q[t++]=i,
vis[i]=;
}
while(m--){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
net[x][y]=z;
c[x]++;
}
while(s^t){
int x=q[s++];
if((!c[x])||f[x]<=)
continue;
for(int i=;i<=n;i++)
if(net[x][i]){
f[i]+=f[x]*net[x][i];
if(!vis[i])
vis[i]=,
q[t++]=i,
f[i]-=u[i];
}
}
for(int i=;i<=n;i++)
if((!c[i])&&f[i]>)
flag=,
printf("%d %d\n",i,f[i]);
if(!flag)
puts("NULL");
return ;
}
NOIP2003 神经网络的更多相关文章
- NOIP2003 神经网络(bfs)
NOIP2003 神经网络 题目背景: 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应 ...
- NOIP2003神经网络[BFS]
题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今 ...
- topsort | | jzoj[1226] | | NOIP2003神经网络
今天终于通过了那道永远都看不懂题目的神经网络... 所谓拓扑排序,就是在有向无环图中,根据已经有的点和点之间的关系进行排序 引用jzyz教材上的栗子:比如说奶牛比较食量大小,我现在拿到的是cow[i] ...
- NOIP 2003 神经网络
洛谷 P1038 神经网络 https://www.luogu.org/problemnew/show/P1038 JDOJ 1278: [NOIP2003]神经网络 T1 https://neooj ...
- 题解 【NOIP2003】神经网络
[NOIP2003]神经网络 Description 问题背景: 人工神经网络( Artificial Neural Network )是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷 ...
- 题解【洛谷P1038/CJOJ1707】[NOIP2003提高组]神经网络
[NOIP2003]神经网络 Description 问题背景:人工神经网络( Artificial Neural Network )是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款 ...
- [NOIP2003] 提高组 洛谷P1038 神经网络
题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今 ...
- Noip2003 提高组 神经网络
神经网络 题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究 ...
- [NOIp2003提高组]神经网络
OJ题号:洛谷1038 思路:拓扑排序,注意细节.1.题目中求和运算$C_i=\displaystyle{\sum_{(j,i)\in E}W_{ji}C_j-U_i}$中$U_i$在求和运算外,只要 ...
随机推荐
- JS常用的function集合
1.把字符串转为日期格式 (1) var str ='2012-08-12 23:13:15';str = str.replace(/-/g,"/");var date = ne ...
- [ javascript canvas isPointInPath(x,y) 判断点是否在最后绘制的图形中 ] javascript canvas isPointInPath(x,y) 判断点是否在最后绘制的图形中方法演示 效果之三
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
- 如何处理 android 方法总数超过 65536 . the number of method references in a .dex file exceed 64k
一:问题描述: 应用中的Dex 文件方法数超过了最大值65536的上限,简单来说,应用爆棚了. 二.解决方案: 方案1:使用插件化框架 比如: https://github.com ...
- 三种经典iPhone上网络抓包方法详解
此文章来自:听云博客 很多时候需要网络抓包分析,在iPhone上抓包稍有不同,下面介绍三种常用的方式.分析工具以wireshark为例. 一.最简单的方式:用PC作为热点,在PC上抓包 优点:简单 缺 ...
- C语言中的复合类型
复合类型 一.掌握的类型 1. 指针数组 int * arr[10]; //arr是一个数组,有10个元素,每个元素都是一个指针,即arr是一个指针数组 int a,b,c,d; arr[0] = & ...
- iOS Xcode编译报错问题解决办法汇总
1. 编译出现错误:linker command failed with exit code 1 第一种方法:找到Build settings->Linking->Other Linker ...
- SSH 框架
SSH是 struts+spring+hibernate的一个集成框架,是目前较流行的一种web应用程序开源框架.是把多个框架(Struts.Spring以及Hibernate)紧密的结合在一起,用于 ...
- js 使某个页面不允许在子iframe中打开的解决办法
在页面中添加如下js代码<script> if (window.parent !== window.self) { window.parent.location.reload(); }&l ...
- WPF学习之路(四)路由
路由事件概述 功能定义:路由事件是一种可以针对元素树中的多个侦听器(而不是仅针对引发该事件的对象)调用处理程序的事件. 实现定义:路由事件是一个 CLR 事件,可以由RouteEvent 类的实例提供 ...
- EMC Documentum DQL整理(二)
1.Get file extension SELECT dos_extension FROM dm_format WHERE name IN (SELECT a_content_type FROM d ...