题目背景

人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。

题目描述

在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子:

神经元〔编号为1)

图中,X1―X3是信息输入渠道,Y1-Y2是信息输出渠道,C1表示神经元目前的状态,Ui是阈值,可视为神经元的一个内在参数。

神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经无分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。

兰兰规定,Ci服从公式:(其中n是网络中所有神经元的数目)

公式中的Wji(可能为负值)表示连接j号神经元和 i号神经元的边的权值。当 Ci大于0时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为Ci。

如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态(Ci),要求你的程序运算出最后网络输出层的状态。

输入输出格式

输入格式:

输入文件第一行是两个整数n(1≤n≤100)和p。接下来n行,每行两个整数,第i+1行是神经元i最初状态和其阈值(Ui),非输入层的神经元开始时状态必然为0。再下面P行,每行由两个整数i,j及一个整数Wij,表示连接神经元i、j的边权值为Wij。

输出格式:

输出文件包含若干行,每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。仅输出最后状态大于零的输出层神经元状态,并且按照编号由小到大顺序输出!

若输出层的神经元最后状态均为 0,则输出 NULL。

输入输出样例

输入样例#1:


输出样例#1:


宽搜

#include<stdio.h>
using namespace std;
bool vis[],flag;
int n,m,net[][],f[],u[],q[],c[],s,t=;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%d%d",&f[i],&u[i]);
if(f[i])
q[t++]=i,
vis[i]=;
}
while(m--){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
net[x][y]=z;
c[x]++;
}
while(s^t){
int x=q[s++];
if((!c[x])||f[x]<=)
continue;
for(int i=;i<=n;i++)
if(net[x][i]){
f[i]+=f[x]*net[x][i];
if(!vis[i])
vis[i]=,
q[t++]=i,
f[i]-=u[i];
}
}
for(int i=;i<=n;i++)
if((!c[i])&&f[i]>)
flag=,
printf("%d %d\n",i,f[i]);
if(!flag)
puts("NULL");
return ;
}

NOIP2003 神经网络的更多相关文章

  1. NOIP2003 神经网络(bfs)

    NOIP2003 神经网络 题目背景: 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应 ...

  2. NOIP2003神经网络[BFS]

    题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今 ...

  3. topsort | | jzoj[1226] | | NOIP2003神经网络

    今天终于通过了那道永远都看不懂题目的神经网络... 所谓拓扑排序,就是在有向无环图中,根据已经有的点和点之间的关系进行排序 引用jzyz教材上的栗子:比如说奶牛比较食量大小,我现在拿到的是cow[i] ...

  4. NOIP 2003 神经网络

    洛谷 P1038 神经网络 https://www.luogu.org/problemnew/show/P1038 JDOJ 1278: [NOIP2003]神经网络 T1 https://neooj ...

  5. 题解 【NOIP2003】神经网络

    [NOIP2003]神经网络 Description 问题背景: 人工神经网络( Artificial Neural Network )是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷 ...

  6. 题解【洛谷P1038/CJOJ1707】[NOIP2003提高组]神经网络

    [NOIP2003]神经网络 Description 问题背景:人工神经网络( Artificial Neural Network )是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款 ...

  7. [NOIP2003] 提高组 洛谷P1038 神经网络

    题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究一直是当今 ...

  8. Noip2003 提高组 神经网络

    神经网络 题目背景 人工神经网络(Artificial Neural Network)是一种新兴的具有自我学习能力的计算系统,在模式识别.函数逼近及贷款风险评估等诸多领域有广泛的应用.对神经网络的研究 ...

  9. [NOIp2003提高组]神经网络

    OJ题号:洛谷1038 思路:拓扑排序,注意细节.1.题目中求和运算$C_i=\displaystyle{\sum_{(j,i)\in E}W_{ji}C_j-U_i}$中$U_i$在求和运算外,只要 ...

随机推荐

  1. AJAX跨域访问(从Tomcat8到Apache/Nginx)

    1.在Tomcat的Root目录下放入如下的文件 apache-tomcat-8.0.12X64\webapps\ROOT clientaccesspolicy.xml文件 <?xml vers ...

  2. 阿帕奇apache服务器和webDav服务器快速配置。

    当自己在家敲代码需要发请求时,就可以配置本地apache,Mac电脑自带的服务器.这个比windows上的本地服务器还要好用,下面写下最快速配置方案. 0.在开始之前需要给自己的电脑设置下开机密码,想 ...

  3. Android SQL语句实现数据库的增删改查

    本文介绍android中的数据库的增删改查 复习sql语法: * 增 insert into info (name,phone) values ('wuyudong','111') * 删 delet ...

  4. 自定义Cell的方法

    Cell属于UITableView中的组件,有多种定义方式,有系统自带的方法,有自定义的方法. 可以使用系统的方法setSeparatorColor(设置分割线颜色) 设置setSeparatorSt ...

  5. php中的curl

    /** * 请求接口返回内容 * @param string $url [请求的URL地址] * @param string $params [请求的参数] * @param int $ipost [ ...

  6. 什么是XMLA-- XML for Analysis

    在我刚开始接触OLAP时,同事就告诉我 XMLA会让他使用更方便. 什么是XMLA? Providers 供应商 ActivePivot Hyperion Essbase IBM Infosphere ...

  7. Palo(OLAP database)–MOLAP

    本地安装:D:\Program Files (x86)\Jedox   Palo-Server https://www.openhub.net/p/p4155 维基百科:https://en.wiki ...

  8. Unknown tag

    <c:forEach items="" var="" varStatus="s">缺少<%@ taglib uri=&qu ...

  9. Javascript 优化项目代码技巧之语言基础(二)

        上一篇随笔介绍了如何正确判断对象类型.避免变量污染,特殊值(null.undefined.NaN)的使用,以及其他Javascript中常用关键字与方法的优化,这篇随笔将着重介绍Javascr ...

  10. 用SQL语句建库建表建约束(用SQl语句在指定盘符创建文件夹)

    一 :创建数据库 创建一个数据文件和一个日志文件(MySchool) create database MySchoolon primary      --默认属于primary主文件组,可省略(--数 ...