数据结构与算法分析 - 网络流入门(Network Flow)
转载:网络流基础篇——Edmond-Karp算法 BY纳米黑客
网络流的相关定义:
- 源点:有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点。
- 汇点:另一个点也很特殊,只进不出,叫做汇点。
- 容量和流量:每条有向边上有两个量,容量和流量,从i到j的容量通常用c[i,j]表示,流量则通常是f[i,j].
通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有“进入”他们的流量和等于所有从他本身“出去”的流量。
- 最大流:把源点比作工厂的话,问题就是求从工厂最大可以发出多少货物,是不至于超过道路的容量限制,也就是,最大流。
求解思路:
首先,假如所有边上的流量都没有超过容量(不大于容量),那么就把这一组流量,或者说,这个流,称为一个可行流。
一个最简单的例子就是,零流,即所有的流量都是0的流。
- (1).我们就从这个零流开始考虑,假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。
- (2).那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值delta。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流,这是显然的。
- (3).这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路。我们不断地从起点开始寻找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。
- (4).当找不到增广路的时候,当前的流量就是最大流,这个结论非常重要。
补充:
- (1).寻找增广路的时候我们可以简单的从源点开始做BFS,并不断修改这条路上的delta 量,直到找到源点或者找不到增广路。
- (2).在程序实现的时候,我们通常只是用一个c 数组来记录容量,而不记录流量,当流量+delta 的时候,我们可以通过容量-delta 来实现,以方便程序的实现。
相关问题:
为什么要增加反向边?
在做增广路时可能会阻塞后面的增广路,或者说,做增广路本来是有个顺序才能找完最大流的。
但我们是任意找的,为了修正,就每次将流量加在了反向弧上,让后面的流能够进行自我调整。
举例:
比如说下面这个网络流模型
我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。
于是我们修改后得到了下面这个流。(图中的数字是容量)
这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。
但是,
这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。
那么我们刚刚的算法问题在哪里呢?
问题就在于我们没有给程序一个“后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。
那么如何解决这个问题呢?
我们利用一个叫做反向边的概念来解决这个问题。即每条边(i,j)都有一条反向边(j,i),反向边也同样有它的容量。
我们直接来看它是如何解决的:
在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。
c[x,y]-=delta;c[y,x]+=delta;.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下:
这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。
那么,这么做为什么会是对的呢?
事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给“退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。
如果这里没有2-4怎么办?
这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点
同时本来在3-4上的流量由1-3-4这条路来“接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流。
附录:(edmonds-Karp版本)
1: void update_residual_network(int u,int flow){2: while(pre[u]!=-1){3: map[pre[u]][u]-=flow;4: map[u][pre[u]]+=flow;5: u=pre[u];6: }7: }8: int find_path_bfs(int s,int t){9: memset(visited,0,sizeof(visited));10: memset(pre,-1,sizeof(pre));11: visited[s]=1;12: int min=INF;13: queue<int> q;14: q.push(s);15:16: while(!q.empty()){17: int cur=q.front();q.pop();18: if(cur==t) break;19:20: for(int i = 1 ; i <= m ; i++ ){21: if( visited[i] == 0 && map[cur][i] != 0){22: q.push(i);23: min=(min<map[cur][i]?min:map[cur][i]) ;24: pre[i]=cur;25: visited[i]=1;26: }27: }28: }29: if(pre[t]==-1) return 0;30:31: return min;32: }33: int edmonds_karp(int s,int t){34: int new_flow=0;35: int max_flow=0;36: do{37: new_flow = find_path_bfs(s,t);38: update_residual_network(t,new_flow);39: max_flow += new_flow;40: }while( new_flow != 0 );41: return max_flow;42: }.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
数据结构与算法分析 - 网络流入门(Network Flow)的更多相关文章
- 数据结构之网络流入门(Network Flow)简单小节
网络流的相关定义: 源点:有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点. 汇点:另一个点也很特殊,只进不出,叫做汇点. 容量和流量:每条有向边上有两个量,容量和流量,从i到j的容量通常用 ...
- nyoj_323:Drainage Ditches(网络流入门)
题目链接 网络流入门@_@,此处本人用的刘汝佳的Dinic模板 #include<bits/stdc++.h> using namespace std; const int INF = 0 ...
- Multi-target tracking by Lagrangian relaxation to min-cost network flow
Multi-target tracking by Lagrangian relaxation to min-cost network flow high-order constraints min-c ...
- 《数据结构与算法分析:C语言描述》读书笔记
我们数据结构的课用了这本英文教材,作者是Mark Allen Weiss.总体来说比<算法导论>简单很多,但内容上交集非常大.其实是因为去掉了大多数证明和数学,对于没有耐心看符号和公式的人 ...
- Tile Cut~网络流入门题
Description When Frodo, Sam, Merry, and Pippin are at the Green Dragon Inn drinking ale, they like t ...
- 数据结构与算法分析——C语言描述 第三章的单链表
数据结构与算法分析--C语言描述 第三章的单链表 很基础的东西.走一遍流程.有人说学编程最简单最笨的方法就是把书上的代码敲一遍.这个我是头文件是照抄的..c源文件自己实现. list.h typede ...
- 网络流入门-POJ1459PowerNetwork-Dinic模板
(我有什么错误或者你有什么意见,欢迎留言或私聊!谢谢!) (Ps:以前听说过网络流,想着以后再学,这次中南多校赛也碰到有关网络流的题目,想着这两天试着学学这个吧~~ 这是本人网络流入门第二题,不知道怎 ...
- <数据结构与算法分析>读书笔记--最大子序列和问题的求解
现在我们将要叙述四个算法来求解早先提出的最大子序列和问题. 第一个算法,它只是穷举式地尝试所有的可能.for循环中的循环变量反映了Java中数组从0开始而不是从1开始这样一个事实.还有,本算法并不计算 ...
- <数据结构与算法分析>读书笔记--运行时间计算
有几种方法估计一个程序的运行时间.前面的表是凭经验得到的(可以参考:<数据结构与算法分析>读书笔记--要分析的问题) 如果认为两个程序花费大致相同的时间,要确定哪个程序更快的最好方法很可能 ...
随机推荐
- Jquery和JS获取ul中li标签(转)
js 获取元素下面所有的li var content=document.getElementById("content"); var items=content.getElemen ...
- 项目分布式部署那些事(1):ONS消息队列、基于Redis的Session共享,开源共享
因业务发展需要现在的系统不足以支撑现在的用户量,于是我们在一周之前着手项目的性能优化与分布式部署的相关动作. 概况 现在的系统是基于RabbitHub(一套开源的开发时框架)和Rabbit.WeiXi ...
- [HDOJ5451]Best Solver(乱搞)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5451 分析:A=5+2根号6 B=6-2根号6 n=1+2^x 那么A^n+B^n是整数 注意到0< ...
- [HDOJ5439]Aggregated Counting(乱搞)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5439 题意:按规则构造一个数列a a(1)=1 a(2)=2 a(2)=2 -------> 写两个 ...
- 边界网关协议BGP
Border Gateway Protocol (BGP) is a standardized exterior gateway protocol designed to exchange routi ...
- Pearson(皮尔逊)相关系数及MATLAB实现
转自:http://blog.csdn.net/wsywl/article/details/5727327 由于使用的统计相关系数比较频繁,所以这里就利用几篇文章简单介绍一下这些系数. 相关系数:考察 ...
- getContentResolver()内容解析者查询联系人、插入联系人
首先,我们需要知道的两个Uri: 1.Uri uri = Uri.parse("content://com.android.contacts/raw_contacts");//查到 ...
- webpack入坑之旅(五)加载vue单文件组件
这是一系列文章,此系列所有的练习都存在了我的github仓库中vue-webpack,在本人有了新的理解与认识之后,会对文章有不定时的更正与更新.下面是目前完成的列表: webpack入坑之旅(一)不 ...
- 安装myeclipse10后破解时发现没有common文件夹
今天重新安装了myeclipse10软件,然后在破解的时候发现安装目录下没有common,这是因为以前安装过myeclipse,卸载时没有完全清除,再次安装时,myeclipse会自动找到以前安装的c ...
- Oracle Temp表空间切换
来源于: http://www.2cto.com/database/201507/418564.html 一.TEMP表空间作用 临时表空间主要用途是在数据库进行排序运算.管理索引.访问视图等操作时 ...




